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AFIT/GA/ENY/11-M15 

Abstract 

 

Kolmogorov-Arnold-Moser (KAM) Theory states that a lightly perturbed, 

conservative, dynamical system will exhibit lasting quasi-periodic motion on an invariant 

torus. Its application to purely deterministic orbits has revealed exquisite accuracy limited 

only by machine precision. The theory is extended with new mathematical techniques for 

determining and predicting stochastic orbits for Earth satellite systems. The linearized 

equations of motion are developed and a least squares estimating environment is 

pioneered to fit observation data from the International Space Station to a phase space 

trajectory that exhibits drifting toroidal motion over a dense continuum of adjacent tori. 

The dynamics near the reference torus can be modeled with time-varying torus 

parameters that preserve both deterministic and stochastic effects. These parameters were 

shown to predict orbits for days into the future without tracking updates—a vast 

improvement over classical methods of orbit propagation that require routine updates. 
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STOCHASTIC ORBIT PREDICTION USING KAM TORI  

 

 

 

I. Introduction 

 

1.1 A Silent Crisis 

Students from the Sewickley Academy packed tightly into a small room at the 

Carnegie Science Center in Pittsburg on the morning of March 12, 2009, for an amateur 

radio downlink from the International Space Station (ISS). One of the students waited 

with nervous excitement to ask about ―new objects being sent into space to be attached to 

the ISS,‖ but ironically he was about to get a rapid lesson about objects sent into space 

that aren’t attached to anything useful at all, i.e. frangible nut fragments, drifting tool 

bags, defunct satellites, loitering rocket stages the size of school buses – junk in general 

[1; 2]. 

Just moments before the scheduled downlink, Mission Control Center (MCC) 

Houston’s Capsule Communicator (CAPCOM) Kathy Bolt delivered a chilling message 

to Expedition 18 Commander Michael Fincke: 

We have information about a RED conjunction. The information came in late and 

with the uncertainty of it, we are wanting to take a conservative approach. It’s a low 

probability of a hit; however, the object is rather large based on what we can track 

and if it does happen to hit the ISS, we’re talking about only a 10 minute reserve time. 

[3]  
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The 13-cm diameter object, cataloged as ―25090 PAM-D,‖ was a tumbling yo weight that 

unwound from a spent payload assist module (PAM-D) during the launch of Navstar 2A-

11 in 1993 [4; 5]. 

As a precaution against 

depressurization from a collision, 

the three person crew took refuge in 

the Russian Soyuz ―lifeboat‖ shown 

in Figure 1. Lucky for them, the 

object passed without incident, but 

this was a close call that could have 

been avoided. Normally the ISS is 

maneuvered out of harm’s way. In 

the eight years prior to this event, the ISS maneuvered eight times to avoid space debris 

[6]. No maneuver was coordinated this time because 25090 PAM-D was classified as a 

low concern 42 hours prior to the time of closest approach. NASA claimed to have ―good 

tracking and a miss outside the notification box‖ [4], but after the maneuver window 

passed, it was discovered that the solar radiation pressure in the tracking model was 

wrong due to the low perigee of the object. This resulted in a smaller radial miss distance. 

NASA scrambled to obtain a higher certainty of the object’s path, but the highly elliptical 

and low perigee orbit made it difficult to get a good track. The best models showed a 

stable and well-behaved covariance, but it was much larger than typically observed near 

the time of conjunction [4]. 

Figure 1. Russian Soyuz docked to the ISS. 

Credit: NASA 
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This wasn’t the first time NASA encountered such shortcomings, nor would it be the 

last. Just eleven days later, the ISS had to be maneuvered to avoid object 26264, part of a 

Chinese CZ-4 rocket launched in 1999 that broke up in March 2000 [7]. These close calls 

were warning shots fired across the bow of the ISS. It made painstakingly clear the 

limitations of our tracking resources, capabilities, and the certainty of orbit predictions, 

all of which will habitually haunt us in the absence of immediate and pervasive 

innovations to the way we conduct business.  

1.2 Purpose 

The subject of this thesis will explore a new method for predicting orbits that may 

improve our space situational awareness and allow us to track more objects with greater 

accuracy than we can today. Doing so would potentially enhance space operations to 

more easily avoid debris headed our way.  Unfortunately, even the most accurate method 

of orbit determination cannot eliminate the excessive catalogue of junk orbiting the earth. 

That makes it all the more essential that we have the best orbit predictions possible to 

forecast collisions and take whatever actions are available to reduce the impact on other 

operations. 

1.3 Implications 

Since the dawn of the space age, the United States and other space faring nations have 

lobbed manmade objects into orbit under the premise that space is so big, it is highly 

unlikely that two random objects will collide in a limited time span. This paradigm – 

called the Big Sky Theory – had left us more concerned about junk falling out of the sky. 

Routine encounters with space junk reentering the atmosphere supported this early 
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outlook. Take for example the Lan Chile Airbus A340 which was travelling between 

Santiago, Chile, and Auckland, New Zealand on March 27, 2007 [8]. The pilot was 

enjoying the calm night air over the South Pacific Ocean when, out of nowhere, flaming 

balls of space junk went hurtling past the plane. The debris was later identified as a 

reentering Russian Progress 23P cargo freighter for the ISS. Similar incidents had a more 

direct ―impact‖ on our psyche. Skylab’s premature reentry in 1979 wiped out a cow in the 

Australian Outback and in 1997 an Oklahoma woman was struck in the shoulder by 

charred material from a Delta II rocket that the U.S. Air Force launched the previous 

year. 

With the threat of space debris coming from all directions, U.S. Space Command’s 

Space Surveillance Network (SSN) today tracks over 19,000 objects in earth orbit 

roughly the size of a baseball or larger. Even as they prioritize tracking assets to protect 

human spaceflight missions and high priority military and civilian satellites, prediction 

accuracy is limited and hundreds of thousands of smaller artificial debris, from paint 

flecks to solid rocket fuel slag, are untracked. The smaller objects can pose just as serious 

of a threat in the space environment, but their sheer number and size make tracking these 

objects very difficult. With a lower mass-to-area ratio, air drag is a more dominant force, 

tending to degrade the orbit much too rapidly for sustainable predictions. 

As the population density of satellites and debris increases, the finite probability of 

two objects colliding also increases. When probability becomes reality, the density 

skyrockets further with the production of new fragments that pose new threats to existing 

satellites. For example, in February 2009 when the Russian Cosmos 2251 collided with a 
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U.S. Iridium satellite 500 miles above Siberia, it resulted in a vast cloud of debris adding 

to the already crowded low-altitude orbital catalogue. More than 2,000 objects being 

tracked today are a result of the Cosmos-Iridium collision alone. 

In 1978, NASA scientists Donald Kessler and Burton Cour-Palais predicted that a 

continued population growth of satellites coupled with seed collisions, like the one 

described above, would fuel a cascade of collisions. ―The result would be an exponential 

increase in the number of objects with time, creating a belt of debris around the earth 

[9].‖  This is very much like the natural planet forming process that relies on a cascade of 

collisions beginning with larger objects and, over time, shifting to smaller objects that are 

greater in number. With every collision, the smashed remnants lose their inclination and 

eccentricity until eventually a cloud of dust orbits in a ring about the equator of the 

central body (like the rings of Saturn), or coalesce into a moon or planet. Hannes Alfvén 

famously described this coalescing of debris using apples in a spacecraft [10]. 

Later studies done by Kessler identified critical population densities for unstable and 

runaway environments in which collisional cascading occurs [11; 12]. He surmised that a 

threshold value for instability exists in an environment in which the fragment population 

will inevitably increase as a result of random collisions dominated by overpopulated 

―intact‖ objects. Given enough time and no additions to the intact population (only 

subtractions by way of collision), equilibrium will be achieved in which the number of 

fragments generated by random collisions matches the number of fragments eliminated 

by natural processes (like air drag). Increasing the intact orbital population beyond its 

final state at equilibrium would upset the system and the production rate of debris would 
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exceed the decay rate of debris. Under the scenario that the intact population is 

continually increased or held steady above the equilibrium threshold, the number of 

fragments would increase toward infinity. Kessler describes this as a ―runaway 

environment‖ [13]. 

The NASA Orbital Debris Program Office’s LEGEND model for studying the orbital 

debris environment between 200 and 50,000 km altitude currently shows regions between 

600 and 1,700 km altitude that are already beyond the critical density [14]. Figure 2 

shows a 200 year forecast for the altitude band between 900 and 1,000 km. With no new 

launches contributing to the current intact population of roughly 500 objects in that band, 

the prediction shows a runaway environment. Similar conditions are found near 1,400 km 

[13]. 

 

Figure 2. LEGEND prediction shows runaway environment between 900 and 1,000 km 

assuming no new additions to the intact population after 2004. 
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Earlier last year, Kessler warned that if the aerospace community continues to 

conduct business as usual—without international adherence to post mission disposal 

guidelines—and if we refuse to innovate with active debris removal programs, 

catastrophic collisions will become more frequent. This could wreak havoc on the global 

economy by disrupting commerce, communications, agriculture, transportation, health 

services, education, energy, and the environment, all of which have become dependent on 

a diverse network of space-based systems that detect and transmit information. Just as 

importantly, it could impair the United States’ ability to defend its interests at home and 

abroad. 

With so much at stake, Congress established the largest study ever conducted on U.S. 

space management and operations in the National Defense Authorization Act for Fiscal 

Year 2000. The Commission to Assess United States National Security Space 

Management and Organization, chaired by the Honorable Donald H. Rumsfeld, released 

its findings on January 11, 2001, with a slew of warnings about space situational 

awareness. ―To use space effectively and to protect against threats that may originate 

from it, the U.S. must be able to identify and track much smaller objects in space than it 

can track today‖ [15:31]. The report specifically recommended technological 

improvements to the Space Surveillance Network by means of electro-optical and radar 

systems, but beyond hardware solutions that unveil what is happening this instant, the 

U.S. strategy must also include proactive measures to avoid future threats. That is to say, 

observing precisely what struck the ISS or a critical satellite is less important than 

forecasting that something will strike the ISS or a critical satellite. 
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As we saw earlier with the close call at the ISS, uncertainty about the debris path left 

NASA scrambling for better tracking data to corroborate the accuracy of already limited 

predictions. If we can predict orbits with greater accuracy, active collision avoidance 

(ACA) systems can serve as a partial solution for those objects that have the means to 

maneuver, such as the ISS. But even for those that do not, there are still benefits to be had 

by targeting objects for new disposal initiatives that seek to remove the most dangerous 

debris from LEO. If nothing else, an expanded catalogue of improved predictions 

provides a crucial level of situational awareness and gives us the ability to plan rather 

than react and potentially avert a silent crisis. 

1.4 State-of-the-Art 

The current state-of-the-art for orbit propagation can be divided into three main 

branches: numerical (also called special perturbations), analytical (also called general 

perturbations), and semianalytical techniques (a combination of the other two). The most 

accurate method is the numerical technique—generally known as Cowell’s method—that 

performs a direct numerical integration of the equations of motion with expanded, high-

order disturbing forces. The problem with this method is that it requires very small time 

steps to benefit from the precision of high order models and is therefore computationally 

expensive. Even as computer resources have become pervasive, the sheer number of 

objects that must be tracked makes this method difficult at this time. The analytical 

techniques which include Simplified General Perturbations (SGP), its popular variant 

SGP4, and Brouwer-Lyddane use truncated force models and averaging techniques to 

simplify the calculations. The benefit of analytical techniques is their speed, but they 
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suffer from immediate errors at epoch on the order of 1 km due to the simplifications 

[16]. Semianalytical techniques such as Draper Semianalytic Satellite Theory (DSST) are 

hybrid variants of the previous techniques for relatively fast and accurate results. 

Unfortunately, all three methods leave a lot to be desired since even the most accurate 

Cowell’s method can become suspect for low earth orbits within a 24 hour period. This 

lack of accuracy keeps the Space Surveillance Network (SSN) overly tasked detecting, 

tracking and cataloging as many objects as possible – barely 20,000 objects out of 

hundreds of thousands. 

Here lies the inspiration for this thesis: what new, innovative orbital prediction 

techniques can we validate and apply to accurately track more objects faster, cheaper and 

better? 

1.5 Problem Statement and Approach 

This thesis will introduce new mathematical techniques for determining and 

predicting stochastic orbits based on the work of William Wiesel [17; 18; 19] using 

Kolmogorov-Arnold-Moser (KAM) Theory in a least squares estimation environment. 

KAM theory eliminates special and general perturbation paradigms by representing orbits 

on tori in 6-dimensional phase space rather than the standard rectangular, inertial 

coordinates. Wiesel previously showed that, when perturbed only by conserved forces 

from a 20x20 EGM96 gravity field, KAM tori predict orbits to within meters of 

numerically integrated orbits for up to a decade [20]. 

With such high accuracy as the baseline for deterministic orbits, the only remaining 

hurdle for KAM theory’s application to low earth orbits are stochastic effects (air drag, 
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lunar/solar point mass effects, and other non-conservative perturbations). Typically for 

low earth orbits, the state-of-the-art numerical methods diverge from the actual orbit 

within a couple days and must be recomputed from new initial conditions, whereas this 

author claims that the baseline KAM torus can be used to predict the actual orbit for a 

much longer period so long as it contains routine phase angle updates and stochastic 

offsets to the reference torus (performed in this research at every time-step). The duration 

and level of accuracy of this so-called ―motion near a reference torus‖ is the topic of this 

research. 

Previous work by Little attempted to fit actual observation data from NASA’s 

oceanography satellite, Jason-1, and the Gravity Recovery and Climate Experiment 

(GRACE) satellite to reference tori that he constructed from purely deterministic orbits 

[21]. His results for Jason-1 produced residuals constrained to less than 1 km for 30 days 

which is not surprising. KAM theory states that a lightly perturbed, nearly-integrable 

Hamiltonian system will lie on a quasi-periodic trajectory in the phase space of a torus. 

Since the height of perigee for Jason-1 is near 1,330 km—where air drag no longer 

dominates among perturbing agencies in low earth orbit (LEO) [22:271]—the system is 

only lightly perturbed and is governed mostly according to KAM theory. However, the 

results from GRACE depicted a much worse correlation between the observation data 

and the reference torus with residuals as large as 90 km. This is due to frequent thruster 

firings and air drag which is more prominent than that experienced by Jason-1 since 

GRACE’s nearly circular polar orbit has a height of less than 500 km. The larger 

perturbations cause the satellite to wander off the reference torus, but since the residuals 
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were limited, it is logical to suppose the satellite was constrained to motion near the 

reference torus. 

Contingent that a reference torus does exist for a non-chaotic orbit, Wiesel and this 

author are investigating the possibility that a dense continuum of flexing, persisting tori 

will also exist nearby, such that the satellite may drift off the initial reference torus 

(generated only by Earth’s gravity field) and circumnavigate neighboring tori when 

stochastic perturbations exceed a threshold value. This must be true for KAM theory to 

accurately apply to all LEO orbits, especially those where air drag is most prevalent. 

1.6 Research Focus 

To explore the concept of motion near a reference torus, the following questions and 

issues will be addressed: 

1)   What are the linearized equations of motion near the reference torus? 

2)   What classical estimation techniques can be applied to fit observation data to a 

continuum of tori near the reference torus? 

3)   Given a good fit from the previous question, can the torus be used to generate 

stochastic predictions and for how long?  

1.7 Preview 

All three research focuses will be successfully answered in this document. Using the 

ISS orbit as a test case, it will be shown that a single ―flexing‖ torus can provide 

stochastic predictions with constrained residuals for a yet-to-be-determined time limit 

(currently more than 18 days). The low eccentricity of the ISS orbit will induce obstacles 

that limit the accuracy of these predictions to RMS residuals near 2 km. It will also be 
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shown that the torus is very sensitive to drag changes in LEO orbits and, in fact, can be 

used to identify weak variations in the thermosphere density due to geomagnetic activity. 
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II. Background 

 

The technical merits of KAM theory are anchored firmly in Hamiltonian physics 

which necessitates a review of relevant analytical mechanics in this chapter. However, as 

LEO orbits are explored in this research, Keplarian motion (anchored squarely in 

Newtonian physics) must be relied upon more heavily for understanding motion near a 

KAM torus. This necessitates a modest review of orbital mechanics up front. Of course, 

most fundamental to this research is KAM theory, itself. Thus, we conclude this chapter 

with a look at the most fundamental work of Kolmogorov, Arnold and Moser. 

2.1 Orbital Mechanics 

This paper is intended to be comprehensive enough to avoid routine cross-references, 

but in order to stand alone, a significant review and derivation of the two-body problem is 

necessitated here. The two-body problem is required to linearize the dynamics of motion 

near Earth satellite KAM tori as will be discussed in §3.2. In addition to deriving the 

classical orbital elements, a number of other related topics are discussed in this section, 

including coordinate systems, perturbations, and Lagrange’s Planetary Equations—all of 

which are relevant or essential to the science of orbit determination using KAM tori. 

 Keplerian Motion 2.1.1

In 1687, Sir. Isaac Newton published The Mathematical Principles of Natural 

Philosophy, more commonly known as the Principia, which not only introduced his 

famous three laws of motion, but also the law of universal gravitation. He stated that any 

two bodies in a system attract one another with a force proportional to the product of their 
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masses and inversely proportional to the square of the distance between them [23:4]. For 

a system of n particles given by m1, m2, …, mn, the vector force acting on mi by each 

particle is expressed as [23:7]: 

 
 ⃑⃑       ∑

  

   
 

 

   
   

 ⃑    (1) 

where   is the universal gravitational constant approximated as       

           ⁄ . 

The position and velocity vectors for the center of mass of each particle is given by: 

 
 ⃑   [

  
  
  
] (2) 
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     ⁄
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     ⁄
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The force acts along the vector [23:7], 

  ⃑     ⃑    ⃑   (4) 

and its magnitude is expressed as: 

 
    | ⃑   |  √( ⃑    ⃑  )  ( ⃑    ⃑  ) (5) 

For a simplified case with no external forces such as drag, thrust, solar radiation 

pressure, or other perturbations, the gravitational force can also be formulated in the 

inertial frame using Newton’s second law of motion [23:8]. 
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Since we assume the body is not expelling mass to generate thrust, the last term in (6) 

is zero. 

Setting (6) equal to (1) and dividing both sides by mi gives the general equation of 

motion for the i
th

 body. A total of n second-order vector differential equations can be 

formed according to [23:9]: 
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 ⃑    (7) 

In a simplified two-body system, the two resulting second order differential equations 

are [23:9]: 
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( ⃑    ⃑  ) (8a) 
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( ⃑    ⃑  ) (8b) 

From (4) we know that [23:10]: 

    ⃑   
   
 
   ⃑  
   
 
   ⃑  
   

 (9) 

Substituting (8a) and (8b) into (9), produces the simplified Keplerian (two-body) 

equation of motion that describes the acceleration of one body relative to the other (since 

it is relative motion, a non-inertial, non-rotating coordinate system may be used with its 

origin in the central body) [23:14]: 

    ⃑ 

   
 
 

  
 ⃑    (10) 

where µ is a gravitational parameter equivalent to G(m1+m2). This value varies based on 

the attracting bodies. When the mass of the central body (m1) is significantly larger than 
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its satellite (m2), the satellite’s mass can be ignored and µ is simply G(m1). For earth this 

value is approximated as                   ⁄  [23:429]. 

The two-body equation is a useful tool for a quick approximation of more complex 

systems, but its accuracy is limited by the assumptions used for its derivation. It assumes 

the bodies are perfectly spherical and symmetric in composition so that they may be 

treated as simple point masses in the analysis [23:11]. In reality, the nonspherical shape 

of each body introduces variations in gravitational forces. The two-body equation further 

assumes that the only force present on each body is a gravitational force acting along a 

line joining the centers of each body [23:12]. This discounts the effects of perturbations 

such as drag, solar radiation pressure, the gravitational influence of additional bodies, etc. 

Each of these perturbations must be accounted for if a higher accuracy solution is desired. 

 Integrals (Constants) of Motion 2.1.2

The solution to the two body problem, like any differential equation, requires 

constants of integration known as integrals of motion, or more simply, just integrals. 

Since the two-body problem consists of three second order differential equations for each 

body, the order of the system or degrees of freedom are 12 [given by (3x2) x 2 bodies] 

[24:37]. To reduce the order to zero, 12 integrals are needed. 

We can start by reducing the system to three second-order differential equations using 

conservation of linear momentum to provide the first six constants from the initial 

position and velocity components of the system’s center of mass [24:37]. This transforms 

the origin to the barycenter of the central body since we assume the satellite’s mass is 

negligible [24:37]. The remaining six are used to define the shape and size of the 
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satellite’s orbit about the central body, the orientation of the orbit using Euler angles, and 

the position of the satellite on the orbit [25:208]. Since angular momentum is conserved, 

three constants come from the components of the angular momentum vector,  ⃑⃑  [25:80]. 

Three more constants come from Kepler’s first law which gives the constant eccentricity 

vector,  ⃑ . Since  ⃑⃑  is defined perpendicular to  ⃑ , the constraint of  ⃑⃑   ⃑    means the 

components of angular momentum and eccentricity only contribute five independent 

constants of integration [25:208]. Kepler’s second law can be used with the polar 

component of the angular momentum vector to provide the final constant of integration – 

the time of perigee passage  [24:37]. The conservation of energy also provides a constant 

of integration [24:37], but it is not independent of angular momentum and eccentricity. 

Given the final six integrals, the satellite’s orbit can be completely specified in space 

with six orbital elements. The eccentricity and angular momentum scalar quantities 

define the orbit in the plane [25:208]. The inclination, right ascension of the ascending 

node and argument of perigee are the three Euler angles that define the orientation of the 

orbit. The first two are directly mapped from the angular momentum vector while the 

latter can be mapped from both the angular momentum vector and eccentricity vector. 

Finally, a point in the orbit is defined by the true anomaly which leads to the time since 

perigee passage. 

For n-body problems, n ≥ 3, the solution requires 6n integrals of motion [24:37]. Six 

are given by the conservation of linear momentum, one is given by the conservation of 

energy, and three more are given by conservation of angular momentum, for a total of ten 

constants [24:37]. The additional integrals obtained with Kepler’s laws in the two-body 
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problem are not applicable for n ≥ 3, so the system can only be reduced to order 6n – 10 

[24:37]. Thus a closed form solution for systems greater than two bodies is not possible, 

but simplifications to the general problem have yielded analytical solutions such as the 

restricted three-body problem (not discussed here). 

2.1.2.1 Specific Angular Momentum 

In a Keplerian system, the only force acting on an orbiting satellite is the gravitational 

force directed radially toward the larger central body. Without other tangential forces to 

alter the rotational motion, angular momentum is conserved. A constant called the 

specific angular momentum can be derived independent of mass by first cross 

multiplying the two-body equation with the position vector [24:24]: 

  ⃑   ⃑ ̈   ⃑  
 

  
 ⃑    (11) 

The second term vanishes since  ⃑   ⃑    and the first term is just the differential 

[24:24]: 

  

  
( ⃑   ⃑ ̇)   ⃑ ̇   ⃑ ̇   ⃑   ⃑ ̈   ⃑   ⃑ ̈ (12) 

Substituting (12) back into (11) and integrating yields a vector constant of integration, 

namely constant specific angular momentum where ―specific‖ signifies the mass 

independence of the equation. 

 
 ⃑⃑   ⃑   ⃑⃑  [

       
       
       

]           (13) 

Since  ⃑⃑  is a constant vector perpendicular to  ⃑  and  ⃑⃑ , the satellite’s motion is fixed in 

the plane containing  ⃑  and  ⃑⃑  called the orbital plane [23:17]. 
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2.1.2.2 Kepler’s First Law, the Trajectory Equation, and Eccentricity 

Kepler’s first law states that planets follow elliptical paths with the sun at one focus 

[24:10]. This statement can be extended to include all conic sections:  circles, ellipses, 

parabolas and hyperbolas [24:29]. The mathematical representation of Kepler’s first law 

describing orbital motion on a conic section is called the trajectory equation. 

To derive the trajectory equation, start by cross multiplying the two-body equation 

into the specific angular momentum vector [24:27]: 

  ⃑ ̈   ⃑⃑  
 

  
 ⃑   ⃑⃑    (14) 

Since angular momentum is constant ( ⃑⃑ ̇   ), the first term can be written [24:27]: 

  

  
( ⃑ ̇   ⃑⃑ )   ⃑ ̈   ⃑⃑   ⃑ ̇   ⃑⃑ ̇   ⃑ ̈   ⃑⃑  (15) 

Substituting the definition of angular momentum, (13), into the second term in (14) 

[24:28]: 
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[ ⃑  ( ⃑   ⃑ ̇)] (16) 

Using the ―bac – cab‖ rule for the cross-products [24:28]: 
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Further simplification with the important identities  ⃑   ⃑ ̇    ̇ and  ⃑   ⃑     yields 

[24:28]: 
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Recognizing this as the time derivative [24:28]: 
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Substituting (15) and (19) back into (14) and rearranging [24:28]: 
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)    (20) 

Integrating [24:28]: 

 
 ⃑ ̇   ⃑⃑   

 ⃑ 

 
  ⃑⃑  (21) 

 ⃑⃑  is the vector constant of integration, sometimes referred to as the Laplace vector 

(named after French mathematician Pierre-Simon Laplace) [25:78], which is directed 

toward the closest point to the central body called periapsis. 

To get a scalar relation for (21), dot multiply both sides by  ⃑  [24:28]: 

 
 ⃑  ( ⃑ ̇   ⃑⃑ )   ⃑  ( 

 ⃑ 

 
  ⃑⃑ ) (22) 

The left-side is simplified using the vector identity  ⃑⃑  ( ⃑⃑   ⃑⃑ )  ( ⃑⃑   ⃑⃑ )   ⃑⃑  from 

which we obtain: 

  ⃑  ( ⃑ ̇   ⃑⃑ )  ( ⃑   ⃑ ̇)   ⃑⃑   ⃑⃑   ⃑⃑     (23) 

Substituting this expression and expanding the right side: 

 
    

( ⃑   ⃑ )

 
  ⃑   ⃑⃑  (24) 

From the definition of the dot product,  ⃑   ⃑     and  ⃑   ⃑⃑        ( ) where   is the 

angle between the fixed vector  ⃑⃑  and the variable position vector  ⃑ . Substituting: 

             ( )  (25) 

Solving for position: 
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( )
 (26) 

This expression is identical to the polar equation of a conic section: 

   
 

       ( )
 (27) 

Three important observations between equations (26) and (27) are that eccentricity, e, is 

equal to    , the parameter or semilatus rectum, p, is     , and the angle  , called true 

anomaly, represents the angle from periapsis to the current location on the orbit. The 

expression given by (27) is known as the trajectory equation or orbit equation. 

Given the relationship between eccentricity and the Laplace vector in the trajectory 

equation, we can rewrite (21) as the eccentricity vector – a constant of integration: 

 
 ⃑  
 ⃑⃑   ⃑⃑ 

 
 
 ⃑ 

 
 (28) 

Like the Laplace vector, the eccentricity vector points toward periapsis and its magnitude 

reveals the shape of the Keplerian orbit. The latter property will be discussed more in 

section 2.1.3. 

2.1.2.3 Kepler’s Second and Third Laws 

Kepler’s second law states that the line joining the planet to the sun sweeps out equal 

areas of the orbit in equal time [24:10]. The mathematical representation of this over a 

differential element of area along the conic section is given by [24:30], 

 
   

  

  ⁄
 (29) 
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where h/2 is the areal velocity. Integrating over 2π radians of v yields the period of one 

orbit – another constant of motion: 

 
  
    

 
 (30) 

Notice the area of an ellipse is given by πab where a is the semimajor axis and b is the 

semiminor axis. If the orbit was circular, it would be πa
2
. The period for a parabolic or 

hyperbolic orbit must be derived separately. 

It is much more insightful to alter the form of (30) by substituting the relation for the 

semiminor axis,    √     √  , where the semilatus rectum, p, is     : 

 

    √
  

 
 (31) 

This is precisely the expression of Kepler’s third law: ―The square of the period of a 

planet is proportional to the cube of its mean distance to the Sun [24:10].‖ 

Kepler used the previous result to define the mean angular rate of a planet about the 

Sun in units of radians per unit time as: 

 
  
  

 
 √
 

  
 (32) 

The constant gravitational parameter, µ, can be solved to reveal the correlation: 

          (     ) (33) 

2.1.2.4 Specific Mechanical Energy or Vis-Viva Equation 

A satellite’s total mechanical energy – the sum of its kinetic and potential energy – is 

conserved in a gravitational field void of external energy sources and sinks. As the 

satellite orbits a central body it continually exchanges one form of energy for the other. A 
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constant called the specific mechanical energy can be derived independent of mass by 

first dot multiplying the two-body equation with the velocity vector [24:26]: 

  ⃑⃑   ⃑⃑ ̇   ⃑⃑  
 

  
 ⃑    (34) 

The vectors can be eliminated by recognizing the general form of the dot product  

 ⃑   ⃑⃑         and realizing that the radial component of velocity, not to be confused 

with the magnitude of velocity, is  ̇        [24:26]: 
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    (35) 

Noticing the presence of the following time derivatives [24:26]: 
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Substituting into (35) yields [24:26]: 
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)    (37) 

Integrating both sides produces the energy integral or vis-viva (―living force‖) equation 

[24:26]: 

 
  
  

 
 
 

 
   (38) 

The first term is the kinetic energy. The second term is potential energy. The constant c is 

arbitrary and defined by the physics community as     , but in astrodynamics it is 

defined as zero [24:26]. 



 

24 

For elliptical orbits that include rectilinear ellipses, another form of the energy 

equation can be formed in terms of the semimajor axis, a. Start by dot multiplying the 

eccentricity vector by itself [26:116]: 

 
    ⃑   ⃑  

 

  
( ⃑⃑   ⃑⃑ )  ( ⃑⃑   ⃑⃑ )  

 

  
 ⃑  ( ⃑⃑   ⃑⃑ )    (39) 

Simplification yields [26:116]: 
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) (40) 

Recognizing the semilatus rectum,      ⁄ , and knowing from the geometry of an 

ellipse that    (    ), the second term on the right-hand side is the inverse of the 

semimajor axis, a [26:116]: 
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)

  

 (41) 

This can be rearranged to match the right-hand side of the energy equation from (38): 

 
 
 

  
 
  

 
 
 

 
 (42) 

Plugging (42) into (38) gives the alternate form of the energy equation [24:27], 

    
 

  
 (43) 

which can also be rearranged to describe the semimajor axis: 

    
 

  
 (44) 

The traditional form of the vis-viva equation is given by solving (42) for v
2 

[24:27]: 
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) (45) 
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 Kepler’s Equation 2.1.3

The final constant of motion mentioned previously as the time of periapsis passage, T, 

is defined once every orbital period when the satellite passes closest to the central body. 

Alone, it is merely a point in time, but its combination with the current time, the time 

since periapsis passage, represented by    , can be used to identify the satellite’s 

location along the orbit. Kepler sought a method that relates this change in time with the 

angular displacement in an orbit. His second law states that equal areas are swept out in 

equal times, so he resolved that all time-to-area ratios can be equated to the ratio for one 

complete orbit [24:51]: 

    

  
 
 

   
 (46) 

The unknown area, A1, is determined from geometry by encompassing an ellipse with an 

auxiliary circle shown in Figure 3. First, visually define the area, A1 [24:52]: 

                (47) 

Triangle A2 is determined by substituting trigonometric relations into the familiar 

geometric area of a triangle,             ⁄  [24:52]: 

 
   

 

 
(       ( )) (

 

 
    ( ))  

  

 
(    ( )     ( )    ( )) (48) 

The area of the ellipse inside points PCB is determined by scaling down the similar area 

of the auxiliary circle inside points PCB’ by b/a (the relationship between vertical 

distance on an ellipse and a circle – see [25:183]). The area of PCB’ is merely the circular 

area of POB’ minus the triangular area OB’C. 
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Figure 3. Ellipse circumscribed in a circle to provide geometry for Kepler’s Equation. 

 

Together, this yields [24:53]: 

 
         *

   

 
 
 

 
(    ( ))(    ( ))+

 

 
 
  

 
[     ( )    ( )] (49) 

Substituting (48) and (49) into (47) [24:53]: 

 
   

  

 
[      ( )] (50) 

Plugging this result into (46) and rearranging gives [24:53]: 

 
  

  (   )

      ( )
 (51) 
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Equating the two expressions for the period of a satellite given by (31) and (51) yields 

Kepler’s equation – a powerful tool for determining time since periapsis passage from the 

eccentric anomaly, semimajor axis and eccentricity [24:53]: 

 

√
  

 
 
(   )

      ( )
 (52) 

Kepler rearranged (52) to define a parameter called the mean anomaly, M, which 

represents the theoretical angle swept out by a satellite travelling at its mean angular 

velocity on a circular orbit of radius a [24:53]: 

 
        ( )  √

 

  
(   ) (53) 

The mean anomaly has no physical significance, but its importance comes from 

relating the eccentric anomaly with time [24:54]. First calculate mean anomaly from time 

and the semimajor axis. Then solve the eccentric anomaly from the mean anomaly’s 

transcendental form. Once E is solved using graphical or numerical methods, it can be 

related to its corresponding true anomaly. Start by defining the eccentric anomaly as a 

function of true anomaly using the auxiliary circle from Figure 3 [24:55]: 

 
   ( )  

    ( )

 √    
 (54) 

 
   ( )  

       ( )

 
 (55) 

The trajectory equation (27) can be substituted for the position r to give [24:55]: 
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 (      ( ))√    
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      ( )
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(      ( ))

   ( )

 
 
     ( )

      ( )
 

(57) 

Solving (57) for    ( ) [24:55]: 

 
   ( )  

   ( )   

      ( )
 (58) 

Next determine an expression for position as a function of semimajor axis and 

eccentricity by rearranging (55) [24:55]: 

 
  
    ( )    

   ( )
 (59) 

Plug (58) into (59) to eliminate true anomaly [24:56]: 

 
  
    ( )    

   ( )   
      ( )

  (      ( )) 
(60) 

Solve (54) for    ( ) [24:56]: 

 
   ( )  

    ( )√    

 
 (61) 

Plug (60) into (61) to solve true anomaly in terms of e and E [24:56]: 

 
   ( )  

   ( )√    

      ( )
 (62) 

Now (58) and (62) can be substituted into the half-angle identity for tangents and 

simplified as [24:56]:  
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   ( )√    

   ( )          ( )
 (63) 

The denominator in (63) is simply the product of (   )(   ( )   ) [24:56]: 
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   ( )√    

(   )(   ( )   )
 (64) 

Again the tangent half angle can be used for the eccentric anomaly components to 

simplify (64) [24:56]: 
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)  √
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) (65) 

Upon rearrangement, the eccentric anomaly is then just: 

 

        (√
   

   
   (
 

 
)) (66) 

 State Representation 2.1.4

The state of a satellite can be completely specified in time by just six quantities. In a 

standard Cartesian reference frame, these are given by the position and velocity vectors. 

Additionally, an element set can be used that consists of scalar magnitudes and angles. 

The most commonly used one is referred to as classical or Keplarian orbital elements. Its 

canonical counterpart is known as the Delaunay elements. Although the classical orbital 

elements (COEs) are more intuitive to envision than a Cartesian set, they do suffer from 

some orbital geometry challenges. To bypass these difficulties, variations of the COEs 

exist, such as the equinoctial elements and their canonical counterparts known as 

Poincare elements. Nevertheless, the complete bill of fare is beyond the purview of this 

study, so we restrict ourselves to a review of the COEs and their Delaunay elements. 
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2.1.4.1 Classical Orbital Elements 

The state vector typically used to identify a two-body orbit in space is given by a set 

of six elements called the COEs or Keplarian elements which include the semi major 

axis, a, the eccentricity, e, the inclination, i, argument of perigee, ω, right ascension of 

the ascending node, Ω, and true anomaly, ν [24:104]. The COEs are the initial conditions 

required to solve the initial value problem for two-body orbital motion [24:103]. The 

COEs can be formulated from the position and velocity vectors in rectangular coordinates 

typically obtained from observation or measurement. 

 

Figure 4. Classical orbital elements. Credit: NASA 

 

The first element – the semimajor axis, a – defines the size of the orbit [24:104]. 

Some texts supplant this element with specific angular momentum, h, or the semilatus 

rectum, p, since the semimajor axis is infinite for parabolic orbits [25:209]. Derived from 

the semimajor axis, the mean motion, n, can also be used to define the shape of any orbit 
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except for parabolic orbits [24:105]. For non-parabolic orbits, the semimajor axis is most 

easily calculated from the energy equation or more expressly (41). 

The second element – the eccentricity, e – defines the shape of the orbit and is the 

magnitude of the eccentricity vector [24:105]. Start by expanding the vector triple cross 

product from (28) to get [24:106]: 

 
 ⃑  
( ⃑⃑   ⃑⃑ ) ⃑  ( ⃑   ⃑⃑ ) ⃑⃑ 

 
 
 ⃑ 

 
 (67) 

Simplifying the dot product of the velocity vectors and combining position vector terms 

yields the final equation [24:106]: 

 

 ⃑  
(   

 
 )  ⃑
  ( ⃑   ⃑⃑ ) ⃑⃑ 

 
 (68) 

The magnitude of the eccentricity vector is simply: 

 
‖ ⃑ ‖  √  

    
    

  (69) 

For non-parabolic orbits the eccentricity can also be determined by [24:106]: 

 
  √  

 

 
 (70) 

When the magnitude of eccentricity is zero, the orbit is circular.  For      , the 

orbit is elliptic. When its magnitude is one, the orbit is parabolic and for    , the orbit 

is hyperbolic. 

The third element – inclination, i – defines the tilt of the orbit plane or, more 

specifically, the angle between the inertial  ̂ axis and the angular momentum vector,  ⃑⃑  

[24:107]. It is also helpful to think of it as the angle between the orbit plane and the 
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equatorial plane ( ̂ ̂ plane) of the central body. The inclination is defined without 

quadrant ambiguity (since i is always in the range of 0° to 180°) as [24:107], 

 
       (

 ̂   ⃑⃑ 

‖ ̂‖‖ ⃑⃑ ‖
)       (

  
 
) (71) 

where  ⃑⃑  is given by (13). 

The fourth element – right ascension of the ascending node (RAAN), Ω – defines the 

angle from the inertial  ̂ axis to the point on the equatorial plane where the satellite 

crosses from the southern hemisphere into the northern hemisphere [24:107]. This point 

is called the ascending node and it is located in the direction of the nodal vector given by 

[24:107]: 

 

 ⃑⃑   ̂   ⃑⃑  [
   
  
 

] (72) 

The RAAN is then defined as [24:107]: 

 

       (
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‖ ̂‖‖ ⃑⃑ ‖
)       
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√  
    

 

)

  (73) 

A quadrant check is necessitated for (73). The RAAN will range from           if 

the ascending node is on the positive side of the  ̂ ̂ plane, meaning the  ̂ component of 

the nodal vector is greater than zero, nj > 0.  If the ascending node is on the negative side 

of the  ̂ ̂ plane, meaning nj < 0, then the correct angle and quadrant are given by 

         so that RAAN will range from             [24:107]. 

We could have also defined RAAN as: 



 

33 

 

       (
 ̂   ⃑⃑ 

‖ ̂‖‖ ⃑⃑ ‖
)       

(

 
  

√  
    

 

)

  (74) 

Combining (73) and (74), we can define RAAN with an ATAN2 function to avoid 

quadrant ambiguity altogether: 

 
       (

  

  
)       ( 

  
  
) (75) 

The fifth element – argument of perigee, ω – measures the angle from the ascending 

node to periapsis. Since the eccentricity vector points to periapsis, the argument of 

perigee is simply: 
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 ⃑⃑   ⃑ 

‖ ⃑⃑ ‖‖ ⃑ ‖
)       
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 √  
    

 

)

  (76) 

A quadrant check is needed since ω can range from 0° to 360°. If periapsis lies below the 

equatorial plane, i.e. the ―k‖ component of the eccentricity vector is less than zero, ek < 0, 

the correct angle and quadrant are given by          [24:108]. 

The sixth element – true anomaly,   – measures the angle between periapsis and the 

position vector which indicates the current location of the satellite in the orbit, so: 

  
       (

 ⃑   ⃑ 

‖ ⃑ ‖‖ ⃑ ‖
) (77) 

A quadrant check is needed since   can range from 0° to 360°. If the satellite is moving 

toward periapsis (away from apoapsis), indicated when  ⃑   ⃑⃑   , then the correct angle 

and quadrant are given by          [24:108]. 
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Degeneracies result from the standard six elements when the orbit is equatorial, 

circular or both. Under these geometric conditions, alternate elements must be used to 

define the orbit.  

For elliptical equatorial orbits where i = 0° or 180°, the nodal vector is undefined 

causing the RAAN to exhibit a singularity. The solution is to replace the RAAN with the 

true longitude of periapsis,  ̃     , which is the angle measured positive eastward from 

the vernal equinox to the eccentricity vector [24:109]. Mathematically this is defined as: 

 
 ̃        

  (
 ̂   ⃑ 

‖ ̂‖‖ ⃑ ‖
) (78) 

A quadrant check is necessitated since  ̃     values range from 180° to 360° (or similarly 

-180° to 0°). If the ―j‖ component of the eccentricity vector is less than zero, ej < 0, then 

the correct angle and quadrant are given by  ̃           ̃    . 

A note is warranted on the difference between true longitude of periapsis,  ̃    , and 

a similar quantity called longitude of periapsis,  ̃, given by [24:109]: 

  ̃      (79) 

Longitude of periapsis defines the angle from the primary axis to periapsis by summing 

two angles in different planes, whereas true longitude of periapsis is a measure of the 

angle between the primary axis and the eccentricity vector [24:109]. At small inclinations 

they are similar, but as inclination increases the difference grows [24:110]. 

For circular inclined orbits, the eccentricity vector is undefined and a singularity 

results when trying to determine argument of perigee and true anomaly. The angle used 

instead is the argument of latitude, u, which is measured positive from the ascending 

node to the satellite’s position: 
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       (
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‖ ⃑⃑ ‖‖ ⃑ ‖
)       (

       

 √       
) (80) 

A quadrant check is needed since u can range from 0° to 360°. If the satellite is south of 

the equatorial plane, indicated when rk < 0, then the correct angle and quadrant are given 

by          [24:108]. 

When argument of perigee and true anomaly are defined for non-degenerate cases, 

the argument of latitude is just: 

       (81) 

The last degenerate case occurs when an orbit is circular and equatorial [24:111]. In 

this case, the ascending node vector and eccentricity vector are undefined causing 

singularities in RAAN, argument of perigee and true anomaly. The angle used instead is 

the true longitude,      , measured eastward from the primary axis to the satellite’s 

current position [24:111]: 

 
         

  (
 ̂   ⃑ 

‖ ̂‖‖ ⃑ ‖
) (82) 

A quadrant check is needed since       can range from 0° to 360°. If the ―j‖ component 

of the position vector is less than zero, rj < 0, then the correct angle and quadrant are 

given by                  [24:111]. 

For non-degenerate cases, the true longitude can be approximated as [24:111]: 

             (83) 

It is only approximate since RAAN is in a different plane than argument of perigee and 

true anomaly in an inclined orbit [24:111]. 
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2.1.4.2 Delaunay Elements 

The classical orbital elements have the benefit of being a relatively intuitive way of 

viewing an orbit, but they make the equations of motion more difficult to solve than 

another choice of variables. Their canonical equivalent—one which satisfies Hamilton’s 

equations (discussed in §2.2.2)—renders more trivial equations of motion with its use of 

generalized coordinates and conjugate momenta. For their simplicity, these so-called 

Delaunay elements are routinely used in perturbation theory. Their derivation is left to 

reference textbooks such as Wiesel [27:62]; however, the result is given here in which the 

capitals denote the momenta: 

   √   (84) 

    √     (85) 

         (86) 

     (87) 

     (88) 

     (89) 

It should be noted that the Delaunay elements suffer from the same degeneracies 

when the eccentricity and inclination approach zero. 

2.1.4.3 Coordinate Systems 

The differential equations of motion in both Newtonian and Hamiltonian systems 

require an inertial celestial reference frame for their solution. The closest realization of 

this in our neighborhood of the universe is the extra-galactic coordinate system anchored 

at the center of the Milky Way Galaxy. Unfortunately, it is not perfectly inertial, nor is it 
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realistic for Earth orbiting satellites. A sufficiently inertial reference frame can be used 

that places the origin at the Earth’s center at any epoch of interest, directs the z-axis along 

the Earth’s axis of rotation in the right-handed sense, and directs the x-axis toward the 

vernal equinox in the equator of epoch. This is known as a true of date (TOD) frame as 

shown in Figure 5. It changes very slowly over time due to planetary precession, luni-

solar precession, and nutation from the Sun and the moon; however, the collective 

precessional period relative to the fixed stars takes nearly 26,000 years [24:207]. As such, 

the apparent diurnal motion of the vernal equinox is very close to the apparent motion of 

the fixed stars. This makes the vernal equinox a good reference point for a sufficiently 

inertial frame. 

 

Figure 5. True of Date (TOD) Cartesian coordinate system. Credit: NASA 
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Earth orientation models are used to determine the true of date equator (current 

position of the equatorial plane) and the true equinox of date (intersection of the current 

equatorial plane and ecliptic). The latest of these, published in 2003, is known as IAU 

2000, but the classical Fundamental Katalog 5 (FK5) theory will be exclusively covered 

here since it is used for the ISS—the source of data for this study. 

2.1.4.3.1 Pseudo-Inertial J2000 Frame 

The TOD frame just introduced is not a good tool for comparing data over a long 

period of time since the frame is constantly changing (due to the Earth’s precession and 

nutation), albeit very slightly. The solution for high precision comparisons is to transform 

all data into a TOD frame at a reference epoch. The J2000 coordinate frame in FK5 

theory does this by establishing a standardized Earth-centered inertial (ECI) frame at 

epoch January 1, 2000, noon TT. It places the origin at the Earth’s center with the xy-

plane in the Earth’s true of date (TOD) equator at epoch J2000, the x-axis directed 

toward the true of date equinox at epoch J2000, and the z-axis pointed North along the 

Earth’s rotational axis. 

2.1.4.3.2 True of Date Rotating (Earth-Fixed Greenwich) Frame 

In addition to celestial-based inertial reference frames, observations of satellites 

require terrestrial-based coordinate frames fixed to the rotating Earth. These come in the 

form of geocentric, barycentric and topocentric, but only geocentric is covered here. The 

geocentric version is routinely called the Earth-centered, Earth-fixed (ECEF) frame 

which means that its orientation remains unchanged with respect to the Earth’s crust. A 
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strict definition of the ECEF frame must account for polar motion—the difference 

between the present axis of rotation called the Celestial Ephemeris Pole (CEP) and the 

International Reference Pole (IRP) which was agreed upon in 1900 and 1905 [24:207]. 

The resulting coordinate system is called the International Terrestrial Reference Frame 

(ITRF), which U.S. Air Force Space Command calls the Earth-centered rotating (ECR) 

frame [24:158]. While the ITRF/ECR is great for surveys or navigation, it is not 

conducive for satellite observations since it is not referenced to the CEP. 

The ideal frame for observations which is referenced to the CEP is simply a rotating 

version of the TOD frame. NASA calls this the true of date rotating (TDR) frame, 

whereas the U.S. Air Force Space Command calls it the Earth-fixed Greenwich (EFG) 

frame [24:158]. Just like the TOD frame, the origin of the TDR frame is fixed to the 

center of the Earth, but the x-axis of the TDR frame is fixed to a local meridian at the true 

equator of date instead of pointing toward the true equinox of date. Generally, the prime 

meridian is used and the z-axis is the same as the TOD frame. See Figure 6 for its 

depiction. The only difference between the TDR frame and the ITRF/ECR frame is the 

correction for polar motion which is very small since the maximum variations between 

the CEP and IRP are approximately 9 meters [24:208]. 

Converting from TOD to TDR and viceversa requires knowledge of Earth’s rotation 

relative to the vernal equinox—a concept known as sidereal time. Viewed from the North 

Pole, the Local Sidereal Time,     , is the angle measured counterclockwise from the 

vernal equinox (defined at the equator) to the local meridian. When the prime meridian 

(0° longitude) at Greenwich is used, there are two forms of the sidereal time: Greenwich 
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Figure 6. True of Date Rotating (TDR) Cartesian coordinate system. Credit: NASA 

 

mean sidereal time,      , and Greenwich apparent sidereal time,      . The mean 

sidereal time is measured along the true equator from the mean equinox to the Greenwich 

meridian, whereas the apparent sidereal time is measured along the true equator from the 

true equinox to the Greenwich meridian. In other words, the apparent sidereal time 

includes the secular precession of the equinox and the periodic nutation effects, whereas 

the mean sidereal time only includes the secular precession of the equinox. This 

difference amounts to the equation of the equinoxes [24:223], 

                ( )̅             (     )             (      ) (90) 
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where    is the nutation in longitude,   ̅is the mean obliquity of the ecliptic, and       

is the RAAN of the mean lunar orbit. The general expression for Greenwich apparent 

sidereal time is then: 

                       (91) 

There are a number of ways for calculating the Greewich mean sidereal time, but a 

convenient method for computers is given by [24:191], 

                  
  (                       )    

             
              

  

(92) 

where      is the number of Julian centuries since epoch J2000. 

Since the contribution from the equation of the equinoxes is on the order of a 

thousandth of a degree, the apparent sidereal time is approximately equal to the mean 

sidereal time. For many applications, the mean sidereal time is close enough; however, 

this author will incur the extra complications to have that precision.  

Given the apparent sidereal time, a simple rotation about the z-axis is required to 

convert from TOD to TDR: 

  ⃑       [     ] ⃑     (93) 

  ⃑⃑       [     ] ⃑⃑      ⃑⃑⃑    ⃑     (94) 

 Orbit Perturbations 2.1.5

In the Earth system, the primary perturbing forces include gradients in the Earth’s 

gravity field, atmospheric drag, solar radiation, and gravitational effects from the sun and 

the moon. Atmospheric drag (a nonconservative force) decreases exponentially with 

altitude, yet dominates at altitudes below ~315 km, while third-body effects 



 

42 

(conservative) and solar radiation (nonconservative) dominate at altitudes above ~19,950 

km [22:271]. In between these altitudes, the gravity gradient (conservative) is the largest 

of the perturbations. It is this region upon which the author will primarily focus since the 

ISS is maintained at altitudes near 350 km. As such, third-body effects and solar radiation 

will not be discussed here. 

2.1.5.1 Nonspherical Earth 

Kepler’s equations were derived with the assumption that the central body is a 

Newtonian point mass. For the Earth to have this property it would have to be a perfect 

sphere with uniform mass distribution or the radius would have to be large enough for the 

Keplarian term to dominate. In reality, the Earth is bulged at the equator, has a slight pear 

shape, and is flattened at the poles [28:142]. Geographical features also contribute to 

anomalies in the gravitational field compared to a uniform featureless surface. Large 

concentrations of mass such as mountain ranges add to the gravity field whereas ocean 

trenches and depressed landmasses reduce the gravity field. 

Even with all of these complexities, the Earth’s geopotential can be modeled with 

extraordinary accuracy and precision with a spherical harmonic expansion given by 

[27:108]: 
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(95) 

µ is the Earth’s gravitational constant, r is the radius from the Earth’s center to the 

satellite,    is the equatorial radius of the Earth, n is the degree of the expansion, m is the 
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order of the expansion,   
  are the Legendre polynomials,     and     are 

dimensionless geopotential coefficients,   is the colatitude and   is the geocentric 

longitude. 

 

Figure 7. GRACE gravity map depicting gravity anomalies on Earth. Credit: University 

of Texas Center for Space Research and NASA 

 

The coefficients can be divided into three classes. The coefficients for degree     are 

called zonal harmonics and depend only on latitude [27:113]. The coefficients for which 

    are called sectoral harmonics and depend only on longitude [27:114]. Finally, the 

coefficients remaining when     and     are called tesseral harmonics and depend 

on both longitude and latitude [27:115]. The last form appears as a ―checkerboard pattern 

of regions that alternatively add to and subtract from the two-body potential‖ [28:143]. 

The coefficients are determined experimentally and placed in a gravity model matrix such 

as NASA’s Earth Gravity Model 1996 (EGM96) or, more recently, models produced 

from the Gravity Recovery and Climate Experiment (GRACE). 
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2.1.5.2 Atmospheric Drag 

The basic equation for atmospheric drag is given as a specific force or acceleration 

[24:525], 

 
 ⃑⃑       

 

 

   

 
     
 
 ⃑⃑    
| ⃑⃑    |

 (96) 

where    is the drag coefficient,   is the cross-sectional area perpendicular to the velocity 

vector,   is the satellite’s mass,   is the atmospheric density, and  ⃑⃑     is the velocity 

vector relative to the rotating atmosphere, or simply [24:526]: 
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When working in the hypersonic realm it is generally common to characterize the 

susceptibility to drag with the so-called ballistic coefficient (BC) which is simply an 

inverse of the second fraction in (96) [24:525]: 

    
 

   
 (98) 

A satellite with a larger surface area and larger drag coefficient will have the effect of 

decreasing the BC and increasing the overall drag. Thus, the BC has an inverse 

relationship with drag. 

Drag is, perhaps, the most difficult perturbation to model because it necessitates 

knowledge of precise attitudes for area calculations and requires a good understanding of 

the atmospheric density which can fluctuate wildly due to solar flux, geomagnetic 

variations, and the molecular structure of the atmosphere [24:526]. Changes in extreme 

ultraviolet radiation (EUV) from incident solar flux cause instantaneous heating of the 

atmosphere. This, in turn, causes density changes at altitudes above the level heated due 
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to increased particle collisions. Geomagnetic storms have the same impact, but exhibit 

delayed heating with density variations persisting for 8 to 24 hours after ground-based 

magnetometers indicate the storm has ended [29:137]. 

Tascione shows that for a minor geomagnetic storm identified by the planetary Kp 

index of 3, a satellite’s in-track displacement (compared to predictions) grew to 5 nautical 

miles in just over 12 hours. For a severe storm identified by Kp = 8, a satellite’s in-track 

displacement grew to 50 nautical miles over the same time period. Of course, polar 

orbiting satellites will experience the most severe orbit degradation due to more prevalent 

atmospheric heating near the poles, but density changes can pervade deep into lower 

latitudes and influence all satellite orbits. Skylab was a perfect example of this. Even with 

a 50 degree inclination, its orbit quickly deteriorated due to increased solar activity at the 

beginning of Solar Cycle 21. 

 Variation of Parameters (VOP) 2.1.6

The six classical orbital elements (            ) were shown to be constants of 

motion in a Keplarian system. With the addition of time as a seventh parameter, a 

satellite’s position and velocity could be precisely determined. In reality, all of these 

constants are changing, some faster than others. This is due to perturbations from forces 

other than the central body’s gravity. These additional forces alter the two-body 

equations of motion given by (10) to yield [24:578]: 

    ⃑ 

   
  
 

  
 ⃑   ⃑⃑      (99) 
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One method for solving the perturbed orbit is called variation of parameters. VOP 

makes the assumption that the perturbations are small enough that the solution to the 

unperturbed two-body system will suffice for the perturbed system. Another assumption 

is that the constants of motion from the unperturbed system can be represented as time 

varying in the perturbed system. So instead of integrating the rectangular coordinates in 

(99) as would be done for the special perturbation technique (Cowell’s method), VOP 

consists of six first-order differential equations describing the time rate of change of the 

osculating elements (           ). The term osculating is used because the elements 

are no longer constant. They represent the satellite’s position at one instant in time since 

they are continuously altered by perturbations. Nevertheless, once the osculating 

elements are solved via the differential equations, they may be resolved into a position 

and velocity vector using the two-body problem solution. This process repeats itself for 

each point in time.  

There are two well-known techniques for VOP; one was developed by Lagrange and 

the other by Carl Friedrich Gauss. Lagrange’s version applies to conservative forces 

while Gauss’ also works for non-conservative forces [24:577]. Both are used as a 

foundation for general perturbation theory which is of limited interest to the present 

study. However, Lagrange’s version will be developed here to derive Lagrange’s 

Planetary Equations of Motion which contribute a set of secular rates to the basis 

frequencies needed for spectral analysis. 
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2.1.6.1 Lagrange Planetary Equations – Potential Form 

Two different forms of Lagrange’s Planetary equations can be derived: one arises in 

an acceleration component form and the other in a potential form. Since the author’s 

motivation is merely to come up with a set of secular rates from the J2 disturbing 

function, only the potential form will be shown here. The most commonly cited 

derivations of Lagrange’s Planetary Equations use Poisson and Lagrange brackets (see 

Brouwer and Clemence), but Wiesel uses a simpler method using the Delaunay elements 

[27:94].  Avoiding the temptation to re-derive the equations, the final disturbing function 

form is presented as [27:98]: 
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The disturbing function is given by R in the planetary equations. Since the gravity 

gradient is the largest source of perturbations in the altitude band of concern in this study, 

we can limit the disturbance function to the geopotential. The zonal harmonic given by 

    and    , also known as the J2 term, has the single largest contribution to the 
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geopotential by at least three orders of magnitude [27:137]. Therefore, the disturbing 

function, R2, is approximated by the J2 term alone. See Wiesel [27:137] for its full 

glorious form. After eliminating periodic terms from R2, its secular form, containing only 

a, e, and i is: 

 
       

   
   

   (    )  ⁄
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    ( )   ) (106) 

Three of Lagrange’s planetary equations contain only secular terms: (103), (104), and 

(105). Upon substituting the partial derivatives of       in each of these, the resulting 

expressions show the approximate contributions from the J2 disturbing function on the 

fundamental basis frequencies of a satellite orbiting Earth (given in the ECI frame) 

[27:141]: 
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2.2 Analytical Mechanics 

The previous discussion of Keplarian motion relied entirely on Newtonian mechanics 

in which the motion of individual bodies was governed by vector quantities such as 

momentum and external forces. Analytical mechanics offers an alternative approach to 

formulate equations of motion by way of the whole system’s kinetic energy and potential 

energy [30:45]. Since these two fundamental quantities are scalars, component-by-
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component analysis with vector quantities is not required in analytical mechanics.  This 

departure from geometrical or physical coordinates frees us from a particular coordinate 

system so that generalized coordinates, q, can be used. If the system is characterized by n 

generalized coordinates and k constraints, the system’s degrees of freedom is given by n 

– k [31:31]. 

Two branches of analytical mechanics discussed in the proceeding sections are 

Lagrangian Dynamics and Hamiltonian Dynamics. The latter will be used to generate the 

equations of motion for the topic of this paper, but it cannot be done without first wading 

into Lagrangian Dynamics from which it is formed. The primary distinction between the 

two branches is that Lagrangian Dynamics provides n second-order differential equations 

containing generalized coordinates   (         ) and their velocities  ̇ (  

       ), while Hamiltonian Dynamics provides 2n first-order differential equations 

containing generalized coordinates   (         ) and their momenta   (         ) 

[30:172].  

 Lagrangian Dynamics 2.2.1

In 1788, Italian mathematician Joseph Louis Lagrange published his seminal work, 

Méchanique Analytique, which contained the generalized Lagrange Equations of Motion 

for a mechanical body [32:226]. His famous equations were largely influenced by his 

work with Swiss mathematician Leonhard Euler to find an analytical solution to the 

tautochrone problem.  Their use of calculus of variations to find the stationary value of a 

definite integral resulted in the Euler-Lagrange differential equation [30:57]. Not by 

coincidence, the Euler-Lagrange equation is similar in form to Lagrange’s equations of 
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motion since Lagrange applied the same method of calculus of variations and the 

principle of least action to dynamic systems to his own equations [33:587]. 

The current form of Lagrange’s equations, described here, was formulated by 

William Rowan Hamilton in 1834 and 1835, when he applied the principle of least action 

to a Lagrangian function, L = T – V, which will be discussed below [34]. To arrive at 

Lagrange’s equations using Hamilton’s method, we start by defining a variation in the 

configuration space of generalized coordinates to understand the principle of virtual work 

on a static system. Then we’ll use d’Alembert’s principle to relate the principle of virtual 

work to dynamic systems. Finally, we’ll use Hamilton’s principle, which is simply the 

integral of  d’Alembert’s principle, to obtain Lagrange’s equations of motion. 

2.2.1.1 Variations 

The basic problem of calculus of variations seeks to find the path y(x) from (x1,y1) to 

(x2,y2) that minimize or maximize the integral   ∫  (      )   
  

  
 [33:583]. Lagrange 

proposed small variations to the dynamical path such that an object can travel between 

the two points in the same time along any path. Consider the example given in Figure 8 in 

which an object is moving between points A(qiA) and B(qiB) in the q-dimensional 

configuration space. The object at point P’ on a varied path  (   ̇  ) is separated from 

an object at point P on the original dynamical path  (   ̇  ) by a small variation    at 

the exact same time, t. At the endpoints, the variation    is exactly zero. 
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Figure 8. Lagrange’s variation in the configuration space. 

Credit: Vinti [31:32] 

 

The variation    is called a virtual displacement and it can vary any coordinate at a 

fixed point in time so long as the variation is consistent with all constraints on the system 

[30:53].  Virtual displacements are distinct from the differential displacement taking 

place between the time interval dt in which forces and constraints may change [30:53]. 

Without delving deep into the calculus of variations in our pursuit to develop Lagrange’s 

equations of motion, we need only show that the operator   is commutable with the d 

designating differentials of displacement. Start by defining the virtual displacement as 

[31:31]: 

        (110) 

The derivative is then [31:31]: 

  

  
(  )   ̇   ̇ (111) 

It is also true that [31:31]: 
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   ̇   ̇   ̇ (112) 

Equating the variations from (111) and (112) we have [31:31]: 

 
  ̇   (

  

  
)  
 

  
(  ) (113) 

From (113) it is shown that the variation of the derivative is equal to the derivative of the 

variation where f may be a scalar or a derivative. More simply, this commuting property 

is expressed as [31:31]: 

       (114) 

2.2.1.2 D’Alembert’s Principle 

Previously, the concept of virtual displacement was introduced to show the 

commutability of the   operator, but virtual displacements can also be used in the same 

way that a differential displacement is used with a force to describe work on a system. 

When an applied force acts on a system through an infinitesimal virtual displacement 

consistent with all system constraints, the work done on the system is zero [30:60]. This 

is known as the principle of virtual work and is a statement of static equilibrium. 

D’Alembert’s Principle extends the principle of virtual work to a dynamic system in 

which the time derivative of momenta are also present [30:65]. 

To derive d’Alembert’s Principle we start with Newton’s second law for a particle of 

mass, mk , in inertial space [31:32], 

    ⃑ ̈   ⃑⃑    ⃑⃑   (115) 

where  ⃑⃑   and  ⃑⃑   are applied and constraint forces, respectively. Now if we rearrange the 

equation and apply the principle of virtual work to the kth particle [30:65]:   



 

53 

   ̅̅̅̅̅  ( ⃑⃑    ⃑⃑      ⃑ ̈ )    ⃑     (116) 

The work done by the constraint force is zero since the constraint force acts normal to the 

virtual displacement. So for a system of N particles, d’Alembert’s Principle is expressed 

mathematically as [31:32]:  

 

  ̅̅̅̅̅  ∑( ⃑⃑      ⃑ ̈ )    ⃑  

 

   

   (117) 

The difference between the applied forces and inertial forces,  ⃑⃑      ⃑ ̈ , is called the 

effective force. As such, d’Alembert’s Principle states that the virtual work of effective 

forces acting on a system through an infinitesimal virtual displacement is zero. 

For a monogenic system, d’Alembert’s Principle can be altered to show the 

relationship between generalized forces and generalized potential [31:32], 

 

∑ ⃑⃑     ⃑  

 

   

    (   ) (118) 

where V is the potential. The interest of this author is its application to satellites in which 

it will later be used to represent the satellite’s gravitational potential energy. 

2.2.1.3 Hamilton’s Principle 

Hamilton’s Principle is merely an integrated form of d’Alembert’s Principle, but its 

real distinction is the ease with which Lagrange’s equations of motion can be found. The 

derivation of Lagrange’s equations can be done using either principle, but it can be a 

chore using d’Alembert’s Principle since (117) uses position coordinates that may not all 

be independent [30:66]. Hamilton’s Principle reduces the problem to a scalar definite 
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integral so that generalized coordinates may be used, and in the case of a holonomic 

system, the coordinates are independent [30:72]. 

Start by integrating (117) from 0 to t [31:33]: 
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The integral on the right can be rendered as [31:33]: 
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From the discussion of variations in 2.2.1.1,   ⃑     at the endpoints of the dynamical 

path, so the first term on the right goes to zero. Also recalling the commutability property 

in which  (  ⃑  )   (  ⃑  )    ( ⃑ ̇ )  , (120) can be rewritten in the form [31:33]: 

 
∫  ⃑ ̈    ⃑  

 

 

    ∫  ⃑ ̇    ⃑ ̇ 

 

 

    
 

 
∫   ⃑ ̇ 

 
 

 

   (121) 

Since the total kinetic energy for a system of particles is given by   
 

 
∑   
 
    ⃑ ̇ 

 , the 

right side of (119) is just [31:33]: 
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For a monogenic system, (118) can be substituted into the left side of (119) to get: 

 

∑∫  ⃑⃑     ⃑  
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   (123) 

Upon substituting (122) and (123) into (119), Hamilton’s principle can be expressed as 

[31:33]: 
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∫  (   )
 

 

     (124) 

The Lagrangian function is defined as [31:34]: 

    (   ̇  )   (   ) (125) 

So Hamilton’s Principle, in its most generic form, is simply [31:34]: 
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     (126) 

2.2.1.4 Lagrange’s Equations of Motion 

With Hamilton’s Principle in hand, we can directly deduce Lagrange’s equations of 

motion. Start by forming [31:34]: 

 

   ∑(
  

   
    

  

  ̇ 
  ̇ )

 

   

 (127) 

The partial with respect to t is not included since corresponding points along the varied 

and dynamical paths are reached at the same time. Substituting (127) into (126) for the 

case of no constraints: 
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The second component in parenthesis can be resolved as [31:34]: 

 
∫
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From the discussion of variations in 2.2.1.1,       at the endpoints, so the first term on 

the right goes to zero. Plugging back into (128): 
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∫ ∑[
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        (130) 

It follows from the fundamental lemma of calculus of variations, the coefficient of     in 

the integrand vanishes over the range of 0 to t [35:34]. It is this coefficient from which 

we deduce Lagrange’s equations of motion [31:34]: 

  

  
(
  

  ̇ 
)  
  

   
 (131) 

 Hamiltonian Dynamics 2.2.2

The equations of motion given by Lagrangian dynamics consists of n second-order 

differential equations; however, it is sometimes more convenient to express the dynamics 

in terms of 2n first-order differential equations called Hamilton’s equations. Both 

Lagrangian and Hamiltonian dynamics require the use of generalized coordinates, but 

they differ in the choice of auxiliary coordinates. The Hamiltonian form uses generalized 

momentum,   , rather than generalized velocities,  ̇ , as was the case in Lagrange’s 

equations. The momenta are simply [31:37]: 

 
   
  (   ̇  )

  ̇ 
 (132) 

Hamilton’s equations of motion are given by the time derivatives of the generalized 

coordinates and momenta. To derive them as a function of the variable set (     ) rather 

than (   ̇  ), a Legendre transformation must be used. Its derivation, shown in [30:93], 

leads to the Hamiltonian function [31:37]: 
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 (     )  ∑   ̇ 

 

   

  (   ̇  ) (133) 

The time derivative of q can be found by taking the partial of H with respect to the 

momenta and recognizing that the  ̇’s are a function of q’s and p’s [31:37]: 
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(134) 

For a system with rectangular coordinates, the summation term in the second line of 

(134) vanishes since the partial of the Lagrangian given by    ∑
 

 
  ( ̇ 

   ̇ 
   

   

 ̇ 
 )   (       ) is just the momenta        ̇ ,        ̇ , and        ̇  

[31:37]. Thus, Hamilton’s first n equations of motion are [31:37]: 

    
  
 
  (     )

   
 (135) 

The time derivative of p can be found by taking the partial of H with respect to the 

generalized coordinates [31:38]: 
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Substituting (131) into (136) and recognizing the definition of momenta from (132) 

[31:38]: 
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Thus, Hamilton’s second n equations of motion are [31:38]: 

    
  
  
  (     )

   
 (138) 

2.3 KAM Theory 

In his famous 1954 address to the International Congress of Mathematicians, Andrey 

Kolmogorov first posed the theory that a lightly perturbed, conservative, dynamical 

system will exhibit lasting quasi-periodic motion on an invariant N-torus [36]. 

Kolmogorov’s student, Vladimir Arnold, and German-American mathematician Jürgen 

Moser rigorously proved the theory for Hamiltonian systems [37; 38]. This new approach 

to stability problems in celestial mechanics would become the foundation for more than a 

half-century of work in a field that now bears their names: Kolmogorov–Arnold–Moser 

theorem. 
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In its simplest mathematical representation, KAM theory is not unlike classical 

perturbation theory with the initial state governed by [39:6]: 

   (   )   ( )    (   ) (139) 

where    is a perturbed Hamiltonian which is   -periodic,   and   are real-analytic 

functions representing an unperturbed Hamiltonian and a perturbing function, 

respectively,   is a small (  ) real valued perturbing parameter, and (   ) are 

symplectic action-angle variables on the torus. One distinct difference between the two 

theories and proof of KAM theorem’s value is the speed at which the solution is 

converged upon. Using a sequence of canonical transformations, the solution from 

classical theory is converged upon linearly, if at all. For example, in the first step, the 

initial Hamiltonian           can be transformed to        
    in which the 

order of the perturbation grows linearly to   . On the j
th

 iteration, the Hamiltonian is of 

the form        
    and the perturbation has grown to    [40:43]. With every 

iteration, the denominator of the generating function can grow arbitrarily small, causing a 

divergence from the solution with higher orders of   [40:39]. This is the well-known 

small divisor problem that plagued mathematicians such as Henri Poincaré [41]. 

Kolmogorov’s theorem overcame the small divisor problem by converging upon the 

solution quadratically such that after the j
th

 iteration the Hamiltonian is of the form 

       
      . This approach controls the small divisor in the sequence of canonical 

transformations so that infinitely many iterations may be used [40:43]. 

This super-convergent analytical technique was used to prove KAM theory and show 

that solutions to a non-degenerate Hamiltonian will persist on an invariant torus as long 
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as the perturbations remain small—an entirely new approach to perturbation theory. 

Classical perturbation theory seeks to approximate the solutions and then explore its 

evolution/stability from a fixed initial condition, whereas KAM theory doesn’t concern 

itself with the motion incurred from preassigned initial conditions, but instead explores 

the dynamic stability in phase space using a set of fixed frequencies that govern quasi-

periodic motion [40:40]. In the integrable case when    , the phase space solution will 

lie on an invariant torus with a set of N fundamental frequencies.  When   is sufficiently 

small and the frequencies are sufficiently incommensurate (satisfying the diophantine 

inequality), a solution is quickly converged upon that remains on the invariant torus (a 

condition of stability). As   grows, the torus is deformed or displaced until it ceases to 

exist [40:42]. 

 Torus Visualization 2.3.1

To fully understand the nature of the torus, its dimensionality must be explored. For 

the typical Hamiltonian system encountered in an earth satellite orbit, the simplified 

point-mass experiences three-degrees of freedom in three-dimensional ―native‖ space 

characterized by the generalized coordinates  ⃑⃑  (        ) and their conjugate 

momenta  ⃑⃑  (        ). Later, we will develop the exact Hamiltonian,  (   ), 

represented by these variables. In the meantime, it is enough to say that KAM theory 

seeks to map this lightly perturbed Hamiltonian to one represented by new coordinates, 

 ⃑⃑  (        ), and momenta,  ⃑⃑  (        ), in which only the momenta appear in 

the new Hamiltonian,  ( ). (See Wiesel [19:7] for further discussion of the new 

Hamiltonian and generating function as approximated with the Delaunay variables.) The 
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absence of the new coordinates merely implies from Hamilton-Jacobi theory that the 

coordinates have constant frequencies. The three present momenta combined with the 

three missing coordinates produce 6-dimensions defining the phase space of the torus. 

This is equivalent to three sets of action-angle pairs, each pair defining a circuit on the 

torus. The new coordinates are the angles which, like their native counterparts, enable 

three-degrees of freedom. The three new momenta are integrals of motion which mandate 

that the solutions lie on a three-dimensional manifold which is topologically equivalent to 

a three-torus [42]. 

Any torus larger than a two-torus is impossible to intuitively comprehend since an n-

torus must exist in at least     dimensions. The three-torus of interest to this work is 

impossible to visualize since it is given by six dimensions, but no loss is incurred since it 

can still be communicated perfectly in mathematical form. It is possible to consider 

partial visualization techniques with lower order tori. For example, a one-torus (given by 

one action-angle pair) with one degree of freedom exhibits bounded motion that looks 

like a circle (two-dimensional). A two-torus (given by two action-angle pairs) with two 

degrees of freedom exhibits bounded motion with respect to two closed circuits that 

resemble a doughnut (three-dimensional). For higher order tori, an approach similar to 

Poincaré mapping can be used to visualize the orbit in a lower dimensional subspace 

[27:25]. In this case, a two-torus can be generated by taking the ―cross-section‖ of the 

three-torus which effectively divorces one of the coordinates and its conjugate momenta 

from the others. Figure 9 depicts a standard two-torus. 
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Figure 9. Cross-sectional view of an invariant two-torus defined with the typical action 

angle variables. In this case the new momenta resemble the actions which define the 

shape of the torus onto which the motion may be projected and the angles give the 

position. 
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III. Methodology 

 

Orbital data from the ISS will be fit to a phase space trajectory that exhibits drifting 

toroidal motion over a dense continuum of adjacent tori due to stochastic and 

deterministic forces. This is distinct from multiply periodic motion on a single torus that 

accounts for purely deterministic forces. The fitting process begins with the construction 

of an initial reference torus from a numerically integrated orbit that includes the full 

geopotential up to order and degree m,n = 20. Wiesel has shown that deterministic tori, 

such as the reference torus, exhibit exquisite accuracy to within a few meters over a 

decade when compared to the integrated orbit (considered as the truth source). The next 

step is to account for stochastic effects in the orbital data that are not modeled by the 

reference torus. Intuitively, the stochastic forces impart an offset to the reference state 

vector. This appears as a displacement in the reference torus’ initial momenta and 

coordinates, the impact of which is motion on an adjacent torus. Bayesian estimation is 

used to find a vector offset that minimizes the residual between the actual orbit and the 

reference torus. Sequential outputs from the Bayes filter provide updates to the reference 

torus that should produce a very good estimate of the ISS orbit over an extended period 

of time. The entire process of constructing the reference torus and fitting ISS data to the 

reference torus is explored and developed here. 

3.1 Reference KAM Torus 

Unfortunately, there doesn’t exist an easy homeomorphism from the three-

dimensional space (given by generalized coordinates,   , and their momenta,   ) to the 

six-dimensional phase space of a torus (given by actions,   , and angles,    ). 
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Nevertheless, the common periodic nature of the physical coordinates and the torus angle 

variables makes an N-tuple Fourier series a possible solution for mapping between both 

spaces. There are generally two approaches used for constructing the torus Fourier series: 

1) trajectory-following techniques that perform a Fourier decomposition of data from 

long numerically integrated orbits, and 2) iterative techniques that find successively 

better approximations of the series using Hamilton’s equations [43:147]. Binney and 

Spergel pioneered the first approach for non-integrable galactic dynamics in 1982 and it 

has since become the most straightforward and robust approach for orbits [43:149]. 

Wiesel has recently shown two variants of this type for earth orbits [17; 18]. The first is a 

one-pass approach that uses least squares to fit a Fourier series to the integrated orbit and 

the second is a two-pass approach that identifies the fundamental frequencies on the first 

pass and then seeks the series coefficients on the second pass. The latter will be employed 

later in this section. 

The aim of both methods is to construct the following finite Fourier series truncated 

to order   (                       ), 

 

 ⃑⃑ (    ⃑⃑ )  ∑  ⃑⃑   (  )   (     ⃑⃑ )

 

    

 (140) 

where  ⃑⃑    are the complex series coefficients,    is the index summation vector, and     ⃑⃑  

are the associated frequency combinations. The more conventional real form gives the 

Fourier series as: 

 

 ⃑⃑ ( )   (       )  ∑ { ⃑⃑     (    ⃑⃑ )   ⃑⃑     (    ⃑⃑ )}

 

    

 (141) 
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  ⃑⃑ ( )   ⃑⃑ (    )   ⃑⃑ (  ) (142) 

Here  ⃑⃑ ( ) are the physical trajectory coordinates in the time domain,  ⃑⃑ ( ) are the torus 

angle variables incremented linearly in time,  ⃑⃑  is a set of N fundamental or basis 

frequencies,  ⃑⃑   and  ⃑⃑   are the Fourier coefficients for each coordinate, and    is the index 

summation vector. The basis frequencies describe the satellite’s underlying periodic 

behavior and are easily extracted from a power spectral density (PSD) plot of the phase-

space trajectory. The Fourier coefficients are just the amplitudes of the Fourier transform 

at each integer combination of the basis frequencies. The index summation is an 

incrementing scheme that allows for integer combinations of the basis frequencies. It also 

ensures that the first non-zero term in    isn’t negative so as to avoid repeated angle 

combinations in the numerical routine, the effects of which are not lost to symmetrical 

trigonometric properties, specifically    ( )      ( ) and    ( )     (  ). 

A variation of Jacques Laskar’s Numerical Algorithm of the Fundamental Frequency 

(NAFF) will be the machinery of choice for finding frequencies and coefficients to 

construct the torus Fourier series. The NAFF is a technique that approximates the 

truncated, continuous Fourier transform (TCFT) so that prominent spectral lines can be 

identified without the destructive effects of aliasing and leakage which will be attended to 

momentarily [44; 45]. The frequency approximations at these peaks can then be used in a 

least squares approach to identify the basis set. With the basis set, Laskar’s NAFF would 

typically be used to extract the coefficients from individual spectral peaks; however, the 

spectral decomposition method used here is a variation of the NAFF that extracts 
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coefficients from clusters of peaks using the analytical form of the truncated, continuous, 

Fourier transform (ATCFT) in the fitting process [46]. 

One is left to ponder the exact relationship between the Fourier series parameters and 

the action-angle variables that describe the satellite position on the torus. From classical 

mechanics, the constant actions define the shape of invariant tori, while the angles are the 

coordinates on the tori. Mathematically, the canonical angle coordinates are those given 

in (142), but their conjugate action momenta are nowhere to be found (explicitly) in the 

Fourier series. The momenta represent the dimensions in phase space that are directed 

away from the torus surface and are only implicitly present through the series 

coefficients. Nevertheless, they can still be calculated explicitly from the Poincaré 

integral invariants [17; 18; 19]: 

 
   

 

  
∮  ⃑⃑    ⃑⃑ 
  

 
 

  
∫  ⃑⃑  
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where    are the angle coordinates,    and    are the native coordinates and momenta, 

and    is a fundamental contour about the torus. As the system oscillates around the torus, 

the time derivative of the coordinates is equivalent to the basis frequencies. Since the 

action momenta are constant on a torus, their time derivative is simply zero, which infers 

the system’s Hamiltonian function is only a function of action momenta. This makes 

sense because the Hamiltonian is conserved. As such, the Hamiltonian equations of 

motion are resolved as: 

    
  
 
  ( )

   
   ( ) (144) 
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  ( )

   
   (145) 

From (144) it is apparent that the frequencies in the orbital motion are a function of the 

action momenta. Thus, the influence of the action momenta on the Fourier series is 

apparent in the Fourier coefficients as amplitudes of the frequencies and their 

combinations in time. 

The subsections that follow will document the exact procedures for generating the 

reference torus, but a preliminary roadmap is given here: 

 Define the satellite’s dynamics with a Hamiltonian. 

 Numerically integrate the Hamiltonian using the satellite’s reference position 

and velocity as the initial condition. 

 Convert the integrated trajectory from the time domain to the frequency 

domain using a finite Fourier transform. 

 Extract the basis frequencies and Fourier coefficients using Laskar’s method.  

 Construct a Fourier series representation of the KAM torus. 

 Earth Satellite Dynamics 3.1.1

A fixed torus about the Earth can only be constructed from a lightly perturbed 

autonomous Hamiltonian system.  The reference satellite orbit includes perturbations 

from the geopotential and ignores all nonconservative forces, so the only temporal 

variations are induced from the rotating Earth. To freeze the geopotential and obtain an 

autonomous dynamical system, the ECEF frame is imposed on the system. The 

Hamiltonian dynamics can then be formulated as done by Wiesel [17:1-2]. 

Start by defining the generalized coordinates in the ECEF frame and their inertial 

velocities resolved in the ECEF frame: 
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] (146) 

The Lagrangian function given by (125) is no longer a function of time since the 

dynamics are autonomous in the non-rotating frame, 
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(147) 

where  ( ) is the expanded geopotential from (95). The canonical momenta are 

calculated from (132) and are identically equal to the inertial velocity components, 

 
 ⃑⃑  [
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 ̇     

 ̇

] (148) 

where    is the Earth’s rotation rate in canonical units of 0.0588335998 rad/TU where 1 

time unit (TU) is 13.446852 minutes. Substituting the appropriate terms into the 

Hamiltonian function given by (133) yields: 
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(149) 

   is the equatorial radius of the Earth equal to 6378.137 km or, in canonical units, 1 

distance unit (DU); µ is the Earth’s gravitational constant equal to 398600.4418 km
3
/s

2
 

or, in canonical units, 1 DU
3
/TU

2
; and as before, n and m are the degree and order of the 

geopotential expansion,   
  are the Legendre polynomials, and     and     are 
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dimensionless coefficients from the gravity model. Finally, the radius, r, the geocentric 

latitude,  , and the east longitude,  , are found from: 

   √         (150) 

      
 

√     
 (151) 

      
 

 
 (152) 

The Hamiltonian equations of motion are determined by taking the partials of the 

Hamiltonian function as specified in (135) and (138) such that, 
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 (153) 

where the partials of  ( ) are the geopotential force upon the satellite and are only 

dependent on the satellite’s position. Given the autonomous nature of the Hamiltonian 

function, the equations of motion are independent of time and the Hamiltonian is a 

constant of motion. 

 Numerical Integration 3.1.2

A Hamming fourth-order predictor-corrector algorithm is used to integrate the 

satellite’s Hamiltonian equations of motion across a one-year timespan from time -T to 

time T to produce coordinate data,  ( ). This amounts to a 6-months forward and 6-
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months backward integration with initial conditions given at time 0. The deliberately 

symmetric forward and backward integration is convenient for a finite Fourier transform, 

but more importantly, it limits the accumulation of total error compared to a 1-year 

forward integration to time 2T or a one year backward integration to time -2T. Since the 

associated local error induced by the algorithm is of order h
5
 where h is the time-step, the 

steps are limited to 40.340556 seconds for a total of 400,000 steps in each direction. 

The total error growth can be conveniently checked at each time-step by calculating 

the absolute change in the Hamiltonian function: 

    | ( )   (  )| (154) 

The Hamiltonian should be a constant of motion, yet      because the integrator is 

not symplectic. In other words, the time evolution of the equations of motion do not 

possess a conserved Hamiltonian. This is a common result for most numerical integration 

schemes since the integration does not conserve the symplectic two-form,        . 

The numerical integration of the ISS trajectory is initialized at, 
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 (155) 

where the position vector is given in DU and the momenta vector is given in DU/TU. All 

geopotential terms up to order and degree m,n = 20 are included in the integration. Figure 

10 depicts the first 30 days of the orbit propagation in the TDR frame. By comparison, a 

full one-year representation of the orbit would cover virtually the entire globe between 52 

degrees north and 52 degrees south of the equator. 
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Figure 10. 30-day representation of ISS orbit propagation 

 

As seen from Figure 11, the maximum amplitude error is roughly       which is 

only four orders of magnitude from double precision accuracy. Given that the 

Hamiltonian and state vector are scaled to order unity, this miniscule error assures that 

the propagated Hamiltonian is only faintly perturbed from the original one and KAM 

theorem will still apply. 
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Figure 11. Hamiltonian error from Hamming fourth-order integrator. 

 

 Fourier Transform and Spectral Analysis 3.1.3

The transformation of the numerically integrated coordinate data,  ( ), from the time 

domain to the frequency domain is done using a finite Fourier transform over the 

symmetric time interval [-T, T]. The typical Fourier transform of a function over an 

infinite time span is done by, 

 
 ( )  ∫  ( )         

 

  

 (156) 

where v is the cycle frequency. The Fourier transform assumes infinite periodicity in the 

signal, but over an arbitrary, finite time interval it is doubtful that the signal endpoints are 

of the same value. The consequence of this discontinuity is a phenomenon known as 

spectral leakage in the Fourier transform [47].  To inhibit this, the signal is multiplied by 
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a window function that forces the signal to start and end at zero amplitude. Laskar’s 

NAFF uses a Hanning window of the form [44, 45], 
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(  ) 
(     ( 

 

 
))
 

 (157) 

where p is the order of the cosine function and T is the frequency interval. 

The window function is shown graphically for various values of p in Figure 12 for 

timespan [-T, T]. With the window function, the finite Fourier transform over the 

timespan [-T, T] becomes: 
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(158) 

The domain of the Fourier transform can be expressed as cycle frequency,  , or angular 

frequency,      , but the latter will typically be used for the torus. 
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Figure 12. Hanning window of order p. 

 

Choosing an appropriate window power is essential to dissecting spectral content 

from the transformed data. The effect of increasing the window power is shown in Figure 

13 by applying a Fourier transform on a single spectral line of unit amplitude over the 

timespan [-1, 1] as demonstrated by Laskar [44:10] and Wiesel [18:4]: 
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 (159) 

In this example, the signal is a gate function and has a single spectral line at     , but 

Figure 13 shows sidelobe oscillations of        which appear from the cosine term in 

(157). As p increases, the main lobe of the    spectral line is broadened and the sidelobes 

around it fall off more rapidly. The amplitude of the spectral line remains the same with 

increasing p, so the advantage of higher order window functions is an accelerated 

convergence upon the basis frequency. One disadvantage is found in signals containing 
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Figure 13. Graph of sidelobe effects from   ( ) to   ( ). 
 

integer combinations of frequency sets in which one frequency is significantly smaller 

than the other: 

   (     )     ⃑⃑  |           (160) 

where mathematical jargon compresses the conditional statement to read:  if there exists 

( ) a pair of frequencies (     ) as an element of ( ) the basis set  ⃑⃑ , such that ( | )    

is significantly smaller than    where m and n are not equal. When this occurs, such as 

the case of cascading harmonics from the small apsidal regression frequency, the higher 

order window functions can ―swallow‖ nearby spectral content. This is known as spectral 

shadowing. 

Ultimately, the choice of the Hanning window power is contingent upon the signal 

characteristics, but Laskar shows for KAM solutions that the accuracy of the frequency 
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analysis (order 1/T 
2p+2

) generally improves by increasing p. He suggests using the 

highest possible value of p until precision begins to decrease. Wiesel has typically used a 

Hanning window of order p=2 to avoid spectral shadowing. This was found to be 

sufficient for the integrated ISS data. 

Once the data is represented in the frequency domain with an appropriate window 

function, the spectrum must be decomposed into a set of precise basis frequencies and 

Fourier coefficients. Wiesel does this by specifying an approximate set of basis 

frequencies (described in §3.1.3.1) followed by a Newton-Rhapson algorithm that seeks 

the maximum spectral power,   | | , in the vicinity of integer combinations of the 

approximate basis frequencies [17:5]. As the peaks are identified, the basis set can be 

determined from a least squares solution of the frequency approximations. With the 

newly estimated basis set, the coefficients of the Fourier transform are determined 

according to the following: 

  (       )    ( ) (161) 

       (   ) (162) 

        (   ) (163) 

 (   ) is the complex Fourier transform at the composite frequency         ⃑⃑ , or in the 

case of the constant term,  (       ) , at    . 

3.1.3.1 Basis Frequency Approximations 

 The starting guess for the three basis frequencies in the TDR frame are determined 

from motion in the two-body orbit with the addition of secular rates from the J2 
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disturbing function (see the Lagrange Planetary Equations from §2.1.6.1). The largest 

frequency is the anomalistic frequency found in the orbit plane. In terms of the classical 

orbital elements, it is approximately the Keplarian frequency with the mean anomaly 

correction: 

 
   √

 

  
 

 √     
 

    ⁄ (    )  ⁄
(
 

 
    ( )   ) (164) 

The second largest frequency appears in the true of date equator. It is approximately the 

Earth’s rotation rate (which must be negative since the node appears to move clockwise 

about the TDR z-axis) with the nodal regression correction: 

 
      

 √     
 

    ⁄ (    ) 
     (165) 

The smallest frequency is approximately the apsidal regression rate that characterizes the 

rotation of the line of apsides due to the Earth’s oblateness: 

 
    

 √     
 

    ⁄ (    ) 
(
 

 
    ( )   ) (166) 

3.2 Motion Near an Earth Satellite KAM Torus 

The motion of an Earth orbiting satellite is dependent on more than just conservative 

gravitational forces, so the reference torus alone will not suffice for most satellites 

(especially those in low Earth orbit). Wiesel claims that the satellite’s physical state 

vector can be modeled with a contribution to the reference torus from non-deterministic 

forces such that, 

  ⃑⃑ ( )  [              ]
 
  ⃑⃑    ( )    ⃑⃑     ( ) (167) 
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where   ⃑⃑     ( ) is the non-deterministic or stochastic displacement. The stochastic 

displacement can occur parallel to the torus surface and perpendicular to it. The parallel 

portion results in a displacement to the torus coordinates,  ⃑⃑ , which can be accounted for 

on the surface of the reference torus. The perpendicular portion cannot be accounted for 

on the surface of the reference torus since any displacement to the torus momenta,  ⃑⃑ , 

steps off the torus surface. Thus the stochastic displacement must be broken into two 

parts: that within the reference torus and that beyond the reference torus. Reflecting both 

parts, the displacement can easily be resolved in terms of the torus coordinates and 

momenta using the chain rule [48:2],  

 
 ⃑⃑ ( )   ⃑⃑    ( )  

  ⃑⃑ ( )

  ⃑⃑ ( )

  ⃑⃑ ( )

  ⃑⃑ (  )
  ⃑⃑ (  ) 

  ⃑⃑    ( )  
  ⃑⃑ ( )

  ⃑⃑ ( )

  ⃑⃑ ( )

  ⃑⃑ (  )
  ⃑⃑ (  )  

  ⃑⃑ ( )

  ⃑⃑ ( )

  ⃑⃑ ( )

  ⃑⃑ (  )
  ⃑⃑ (  ) 

(168) 

 

where the local displacement with respect to the reference torus is given by: 

 
  ⃑⃑ ( )  *

  ⃑⃑ ( )

  ⃑⃑ ( )
+ (169) 

The process for determining the local displacements is left for the next section, but 

first, let us direct our attention to how they are used for both parallel and perpendicular 

motion. There are two ways to account for the parallel motion labeled in (168). Not 

surprisingly, the most direct method simply adds the parallel   ⃑⃑  component to the torus 

generated  ⃑⃑    , exactly as indicated. The preferred, indirect method adds   ⃑⃑  to the torus 

coordinates which makes it unnecessary to add the parallel   ⃑⃑  component to  ⃑⃑    . Either 

Perpendicular Parallel 
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way, the contributions of   ⃑⃑  must be accumulated over time and stored in  ⃑⃑ (  ) to 

minimize error growth in the reference torus and avoid a breakdown of the linearization 

model. Unlike parallel motion, there is only one way to account for the perpendicular   ⃑⃑  

component; it must be added directly to  ⃑⃑     since  ⃑⃑  remains unchanged on the reference 

torus. 

Even though the momenta do not change on the reference torus, the actual orbit is 

characterized by new momenta formed by the displacement,  ⃑⃑    ⃑⃑ , which is still 

constant, but describing an adjacent torus with different frequencies. This frequency shift 

must be accounted for in the reference torus coordinates if it is to accurately approximate 

motion nearby. Recall that the state vector for the torus coordinates and momenta is given 

by: 

 
 ⃑⃑ ( )  *

 ⃑⃑ ( )

 ⃑⃑ ( )
+  [ ⃑⃑

  (    )   ⃑⃑ (  )
        

] (170) 

It was previously shown in (144) that the constant frequencies,  ⃑⃑ , are a function of the 

momenta, so if the momenta change by an incremental amount, so too do the frequencies 

[48:7]: 

 
  ⃑⃑̇    ⃑⃑  

  ⃑⃑ 

  ⃑⃑ 
  ⃑⃑  (171) 

Since the torus coordinates,  ⃑⃑ , increment linearly with time as seen in (170), a slightly 

different frequency manifests as a linear drift in the corresponding torus coordinate. We 

directly observe the drift magnitude by integrating (171) to get: 
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  ⃑⃑    ⃑⃑   

  ⃑⃑ 

  ⃑⃑ 
  ⃑⃑  (    ) (172) 

When the offset,   ⃑⃑ , is added to the reference torus coordinates, it should minimize the 

error between the actual orbit (potentially on an adjacent torus) and the reference torus 

(likely nearby). That is to say, the   ⃑⃑  update to the reference torus should maintain a 

close proximity to the actual orbit by accounting for parallel local motion near the 

reference torus. With the update, the reference torus coordinates are simply: 

  ⃑⃑ ( )   ⃑⃑  (    )   ⃑⃑ (  )    ⃑⃑  (173) 

Wiesel indicates that the reference torus initial coordinates must be routinely updated 

with the offset,   ⃑⃑ , to remain within the region for which the linear observation model is 

a valid approximation of the satellite’s motion. 

Next, let us direct our attention to the partial derivative matrices from (168) which 

will be needed for sequential-batch estimation.   ⃑⃑ ( )   ⃑⃑ (  )⁄  is shown to be the 

following 3x6 matrix: 

 
  ⃑⃑ ( )   ⃑⃑ (  )⁄  *

  ⃑⃑ 

  ⃑⃑  

  ⃑⃑ 

  ⃑⃑  
+ (174) 

Taking the partials of (173) with respect to  ⃑⃑  , it is clear that the left Jacobian is a 3x3 

identity matrix. The right Jacobian is much more complicated. If (144) is expanded with 

the chain rule to include a small change in the fundamental frequencies [49], 

   ⃑⃑ 

  
  ⃑⃑  

  ⃑⃑ 

  ⃑⃑ 
  ⃑⃑   ⃑⃑  

   

  ⃑⃑  
  ⃑⃑  (175) 

  ⃑⃑   ⃑⃑  ⁄  can then be approximated from the second partial derivative of the Hamiltonian 

function,  [19:8]: 
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  (176) 

where the first term is from two-body motion, the second is a vestige of the partial 

derivative of the generating function with respect to time (an artifact of using the TDR 

frame for the torus coordinates), and the last term is the J2 potential in terms of the 

Delaunay momenta. The first partial of   is the frequency given by (144), or written as a 

scalar [48:7]: 

   

   
    (177) 

The second partial derivative of   is then the typical Jacobian [48:7]: 
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Applying the finishing touch to (174), the full matrix is, 
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where the matrix components are [48:7]: 
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In a similar manner,   ⃑⃑ ( )   ⃑⃑ (  )⁄  is easily shown to be: 

 
  ⃑⃑ ( )   ⃑⃑ (  )⁄  *

  ⃑⃑ 

  ⃑⃑  

  ⃑⃑ 

  ⃑⃑  
+ (186) 

From (144), the momenta are constant, so the left Jacobians is a 3x3 zero matrix and the 

right Jacobian is a 3x3 identity matrix. 

 
  ⃑⃑ ( )   ⃑⃑ (  )⁄  *

      
      
      

+ (187) 

The first three rows of the 6x3 Jacobian matrix,   ⃑⃑ ( )   ⃑⃑ ( )⁄ , are all that is required 

to produce displacements to the native coordinates and can be determined directly from 

the partial derivatives of the torus Fourier series previously specified by (141) such that, 

 

  ⃑⃑ ( )    ( )⁄  ∑   {  ⃑⃑     (    ⃑⃑ )   ⃑⃑     (    ⃑⃑ )}

 

    

 (188) 

A less accurate alternative is to approximate the full Jacobian matrix from the derivatives 

of the linearized two-body problem. This is the same method required for determining 

  ⃑⃑ ( )   ⃑⃑ ( )⁄ . 

It follows that the 6x6 observation partial derivative matrix,   ⃑⃑ ( )   ⃑⃑ ( )⁄ , is just the 

concatenation of   ⃑⃑ ( )   ⃑⃑ ( )⁄  and   ⃑⃑ ( )   ⃑⃑ ( )⁄ . The first three columns of 
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  ⃑⃑ ( )   ⃑⃑ ( )⁄  are   ⃑⃑ ( )   ⃑⃑ ( )⁄  and the last three columns are   ⃑⃑ ( )   ⃑⃑ ( )⁄ . The matrix, 

  ⃑⃑ ( )   ⃑⃑ ( )⁄ , cannot be determined directly, but it can be formulated from a mapping 

between two separate Jacobians, namely   ⃑⃑   ⃑ ⁄  and   ⃑   ⃑⃑ ⁄ , where  ⃑  is the vector 

formulation of the classical orbital elements: 

  ⃑ ( )  [           ]  (189) 

This mapping is possible since the canonical torus coordinates are very nearly equivalent 

to the first three classical orbital elements. As a consequence, we can write  ⃑  as [48:2]: 

  ⃑ ( )  [              ]
  (190) 

The first partial derivative,   ⃑⃑   ⃑ ⁄ , is the Delaunay elements Jacobian. Wiesel has 

shown that upon ignoring Earth’s rotation rate and limiting the gravity field to a single 

point mass term, as in the two-body problem, the torus coordinates and momenta revert to 

the Delaunay elements given in (84) - (89) [19:7]. Thus, the state vector Y can be written 

in terms of the Delaunay elements as a reasonable approximation [48:6]: 
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The Delaunay elements Jacobian is discerned in the usual fashion: 
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where the matrix components are [48:6]: 
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The second partial derivative,   ⃑   ⃑⃑ ⁄ , is the two-body elements Jacobian in which 

the classical orbital elements are linearized in the TDR frame. Start by characterizing the 

Jacobian matrix as: 
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Given the definition of the semimajor axis in (41), the partial derivative components in 

the fourth row of (202) are: 
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Given the definition of the magnitude of the eccentricity vector in (69), the partial 

derivative components in the fifth row of (202) are [48:3]: 
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The partial derivatives of the eccentricity vector required in (209) - (214) are determined 

from (68) [48:3]: 
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Given the quadrant conclusive definition of inclination in (71), the partial derivative 

components in the sixth row of (202) are [48:4], 
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where the specific angular momentum vector,  ⃑⃑ , is given in (13) and its partial 

derivatives are [48:4]: 
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Given the quadrant conclusive definition of RAAN in (75), the partial derivative 

components in the second row of (202) are [48:4]: 



 

89 

   

  
 

 

       
(  
   

  
   
   
  
) (237) 

   

  
 

 

       
(  
   

  
   
   
  
) (238) 

   

  
 

 

       
(  
   

  
   
   
  
) (239) 

   

   
 

 

       
(  
   

   
   
   
   
) (240) 

   

   
 

 

       
(  
   

   
   
   
   
) (241) 

   

   
 

 

       
(  
   

   
   
   
   
) (242) 

Given the definition of argument of perigee in (76), the partial derivative components in 

the third row of (202) are [48:5]: 
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where the components of the angular momentum vector, eccentricity vector, and their 

partials are as before. Since the argument of perigee requires a quadrant check, the 

partials must be multiplied by -1 if the ―z‖ component of the eccentricity vector is less 

than zero, ez < 0. 

The final set of partial derivatives in the first row of (202) is the most complicated. 

Starting with the definition of the mean anomaly at epoch (53) [48:6], 
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Recall that the partial derivatives of the eccentricity are given by (209) - (214); however, 

the partial derivatives of the eccentric anomaly come from (66) such that [48:5]: 
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The partial derivatives of the eccentric anomaly introduce the need for the partial 

derivatives of the true anomaly,  . From (81) we know that for the non-degenerate case,  

       (261) 
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 (262) 

Since the partial derivatives of argument of perigee have already been determined, all that 

is required are the partial derivatives of the argument of latitude,  , given by (80) [48:5]: 
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Since the argument of latitude requires a quadrant check, the partials must be multiplied 

by -1 if z < 0. 

With the completion of (202), the observation partial derivative matrix,   ⃑⃑   ⃑⃑ ⁄ , can 

be formed by inverting the product of the Delaunay elements Jacobian and the two-body 

elements Jacobian [48:6]: 
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  ⃑⃑ 
 (
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)

  

 (269) 

One method to verify the two-body analytical formation of   ⃑⃑   ⃑⃑ ⁄  is to numerically 

differentiate a collocation formula. Here I’ve chosen Stirling’s formula to get [50:112], 

    
   
(    )  

 

   
(                   ) (270) 

where    are native coordinates and momenta determined from the torus Fourier series at 

one observation time. For each observation, (270) must be evaluated with five data 
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points, (                     )     
. Each is formed from a slight variation to the 

core      such that (                          )     
 are all separated by a small step 

size, h. In other words, (                                  )     
. During 

the least squares fitting process, which will be discussed in the next section, h can be set 

to any small step size on the first iteration since       . On subsequent iterations and 

for Bayesian filtration, it is preferred that the step size be scaled relative to the magnitude 

of     . The overall 6x6 partial derivative matrix is then formed according to the typical 

Jacobian, 
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 (271) 

3.3 Toroidal Sequential-Batch Estimation 

The process of estimating an actual orbit with a reference torus is a new one. With 

both slow and fast variational forces acting on a satellite, uncertainties in the dynamics, 

and errors in observational data, a stochastic approach must be applied to determine a 

best estimate of the state. The primary question arising from this concerns when and how 

state updates,   ⃑⃑  , should be incorporated into the reference torus. Should it be done at 
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each successive observation time (as done with Kalman filters) or should it be done at the 

beginning of a batch of observations over an extended period of time (as done with 

nonlinear least squares)? If the answer is the latter, how should the state and covariance 

be brought forward in time for every new batch of data? Without a previously published 

or accepted technique for filtering the data and estimating the orbit with a KAM torus, 

this author considered all possibilities from the traditional carte du jour for nonlinear 

systems. 

In the Kalman filter class of differential correction techniques, two were considered: 

linearized and extended Kalman filters. Given the complexities of generating a reference 

torus at this time, the so-called extended Kalman filter was immediately discounted since 

it requires re-integrating the orbit (thus generating a new torus) at each observation time 

[24:736]. The linearized Kalman filter which avoids having to re-integrate the reference 

trajectory also will not work since it does not utilize state updates in subsequent 

predictions [24:735]. It is crucially important that routine updates be provided to the 

reference torus to prevent the actual orbit from drifting beyond a region correctable by 

linearized models. The usual sequential-batch least squares method, sometimes called a 

Bayes Filter, was also dismissed for its inability to propagate the state and covariance 

through time [24:716]. Nevertheless, a variation of the Bayes filter that does provide 

updates to the reference torus was deemed appropriate. 

Our version of the Bayes filter produces an update to the initial phase angles,  ⃑⃑  , of 

the torus after every batch of observational data is processed. Subsequent torus 

predictions are produced from the updated epoch coordinates. In addition to phase angle 
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updates, Bayesian estimation demands a priori data passed from batch to batch. On the 

first batch, the nonlinear least squares algorithm is used to generate the first phase angle 

update and covariance matrix. But before either the nonlinear least squares algorithm or 

the Bayes filter, the data must be ―pre-filtered‖ to eliminate rogue data. Thus we begin 

with the development of the so-called pre-filter. 

 Pre-filtration 3.3.1

A pre-filtration routine was developed by this author to eliminate fallacious 

observational data,  ⃑⃑ , that appears as improbable spikes in the residual vector given by: 

 

 ⃑   *

    ̂ 
    ̂ 
    ̂ 

+ (272) 

where the predicted coordinates from the state vector,  ⃑⃑ , are notated by the ―hat.‖ The 

residual from GPS data is generally smooth except in the case of a maneuver, but even 

post-maneuver the residual is still quite smooth, just with a different magnitude. As such, 

outlier data is easy to identify. The entirety of the data is not pre-filtered all at once; 

rather, it is pre-filtered in batches in sequence with the nonlinear least squares and bayes 

filter. This ensures the residuals between the observation data and the reference torus 

remain small compared to outlier data. 

The pre-filter evaluates the data on three passes using three different techniques to 

identify rogue data. The first pass merely eliminates data outside of four standard 

deviations. The second pass generates a moving average and moving standard deviation 

from eleven data points – five before and five after the current observation, except at the 

beginning and end of the data file which uses the first and last eleven data points, 
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respectively. Data outside of 3 moving standard deviations from the moving average are 

eliminated. The third pass evaluates the absolute value of the slope between the current 

and previous data point and if the slope exceeds 10 km/TU, the current data is rejected. 

The first data point must be good for the third pass to work. The author monitored which 

data were rejected and the total effect of the three passes was flawless for an entire week 

of ISS data sampled at one minute intervals. 

 Nonlinear Least Squares (NLS) 3.3.2

Once the data is pre-filtered, the iterative non-linear least squares algorithm is 

initiated. At zero epoch, the residual between the observation data and the reference torus 

should be small. If it is not, the reference torus is probably not sufficient for an accurate 

estimate and must be refined. When the residual is small enough (less than 1 m is ideal), 

the state vector can be predicted at each observation time using a null displacement on 

the first iteration: 

   ⃑⃑⃑⃑  ⃑  [      ]
   (273) 

Next, determine the residuals from observation data,  ⃑⃑ , and estimated data,  ⃑⃑ , using 

(272). The observation data of the ISS is from the Global Positioning System (GPS) 

which shows very little noise. We approximate the total instrumental covariance matrix: 

 
  [

     
     
     

]    (
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]     (274) 

If both position and velocity were of interest to this study, the observer would be defined 

as a 6x6 identity matrix; however, since only the native position coordinates are of 

interest, define the observer as: 
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From the local dynamics given in (168), form the 6x6 state transition matrix as: 
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(276) 

where the partial derivatives are the same as those developed previously. For each 

observation, form the 3x6 version of the observation partial derivatives matrix according 

to: 

      [ (     )] (277) 

Since the observational data is pre-filtered to eliminate fallacious points, rejection 

processing during the nonlinear least squares algorithm is turned off; nevertheless, if the 

reference torus predictions are accurate enough, each observation can be processed to 

reject data in which the residual is beyond 3 standard deviations of the instrumental 

noise: 

 
|      |   √                    (278) 

If the data is not rejected, add to the running sums of the inverted covariance matrix,    , 

and the vector,  ⃑⃑ : 

     ∑  
 

 

  
     (279) 

  ⃑⃑  ∑  
 

 

  
   ⃑   (280) 
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For each position coordinate, add the square of the residual to a running sum. Once 

all observations have been processed, calculate the RMS of residuals according to: 

 

         √
∑         

 
 (281) 

Check for convergence. If the RMS of residuals for each coordinate is less than the 

standard deviation of the instrument noise, the solution is at hand. 

 
         √                     (282) 

If the solution has not converged, improve the estimate of   ⃑⃑⃑⃑  ⃑  at epoch by adding the 

product of the covariance matrix and the vector,  ⃑⃑ : 

   ⃑⃑⃑⃑  ⃑ ( )    ⃑⃑⃑⃑  ⃑ ( )    ⃑⃑  (283) 

Then repeat the process from the beginning using the new estimate of   ⃑⃑⃑⃑  ⃑ . Note that we 

are not calculating   ⃑⃑⃑⃑  ⃑  at every observation; we are doing so for the whole batch of data. 

Also, this update will be discarded if the convergence criteria are met in the current 

iteration. 

Once converged or when the maximum number of iterations has been reached, log 

  ⃑⃑⃑⃑  ⃑  and the observation covariance matrix to pass forward to the Bayes filter for the 

second batch of data. 

 Bayesian Filtration 3.3.3

Begin by pre-filtering the data as before, but predictions from the reference torus are 

determined using   ⃑⃑⃑⃑  ⃑  from the least squares routine (only if on the second batch) or from 

the previous Bayes filtration. To avoid confusion with the new displacement that will be 
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determined, we will call this   ⃑⃑⃑⃑  ⃑    . Next, bring the initial phase angles and covariance 

matrix forward to the current epoch using   ⃑⃑⃑⃑  ⃑    . The update to  ⃑⃑   is determined from 

(172) such that: 

  ⃑⃑       ⃑⃑
 
       

⃑⃑⃑⃑  ⃑(           ) (284) 

where the value of   ⃑⃑⃑⃑  ⃑ is accumulated from the old epoch to the new epoch. The 

covariance matrix is propagated using the state transition matrix,  (           ), from 

(276) and using the covariance matrix,     , from the previous epoch: 

     ( )        
  (285) 

With the phase angle update and a priori data now available at the new epoch, begin 

the first iteration using the previous correction to the torus state vector: 

   ⃑⃑⃑⃑  ⃑    ( )    
⃑⃑⃑⃑  ⃑
     (286) 

As before, calculate the residuals and observation partial derivative matrix (277) for each 

observation, and accumulate the summation matrices (279) and (280). After all 

observations have been processed, the inverse covariance matrix is given by: 

     
  ( )      

  ( )  ∑  
 

 

  
     (287) 

 Next, check for convergence using the RMS for each coordinate as presented 

previously in (281) and (282). If the solution has not converged, improve the estimate of 

  ⃑⃑⃑⃑  ⃑  at epoch according to: 

   ⃑⃑⃑⃑  ⃑    ( )      ( )(    
  ( )( ⃑⃑     ( )   ⃑⃑

 
    )   ⃑⃑ ) (288) 
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Since  ⃑⃑  is constant and  ⃑⃑   is constant for a single batch,   ⃑⃑  and   ⃑⃑  are all that change, 

so: 

  ⃑⃑     ( )   ⃑⃑
 
       

⃑⃑⃑⃑  ⃑
    
( )    ⃑⃑⃑⃑  ⃑     (289) 

As with the nonlinear least squares, repeat the process with every new estimate of   ⃑⃑⃑⃑  ⃑  

until the solution converges or until the maximum number of iterations has been reached. 

Then log   ⃑⃑⃑⃑  ⃑  and the observation covariance matrix to pass forward to the next batch of 

data. 

3.4 Stochastic Orbit Modeling 

Modeling stochastic orbits requires discrete knowledge of both gravitational and non-

gravitational perturbations. The reference torus allows us to distinguish between them 

since it already contains the earth’s geopotential effects. The added dynamics near the 

reference torus, as estimated by the least squares fitting process in the previous section, is 

a result of non-gravitational perturbations and can be parameterized for apparent 

stochastic behavior. Stochastic, by definition, infers a random nature, but because it is 

believed motion near the torus exhibits an ostensible orderliness that can be modeled for 

a period of time under similar environmental conditions, this author shall refer to torus 

perturbations as pseudo-stochastic. 

To produce stochastic predictions via the reference torus, the initial phase angles,  ⃑⃑  , 

must be varied with time (think of this as parallel motion on the surface of the torus) as 

do the momenta offsets,   ⃑⃑⃑⃑  ⃑, which allow the satellite to move off the surface of the 

reference torus (think of this as perpendicular motion). The behavior of the initial phase 
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angles and momenta offsets are first determined through Bayesian estimation which may 

be sensitive to the number of observations included in each batch. During the estimation 

process, the torus’ initial phase angles are updated after every batch which encapsulates 

the influence of non-gravitational perturbations and the momenta offsets are stored for 

later use. Assuming these empirical parameters are well-behaved and can be modeled 

with a time-varying curve, their propagation can provide autonomous updates to the 

reference torus for non-gravitational perturbations. For now on this author will refer to 

these as the pseudo-stochastic parameters. Given a reference torus and the pseudo-

stochastic parameters, one should be able to predict the non-chaotic orbit of any satellite. 

3.5 Observational Data 

The procedures outlined in this chapter may be applied to any satellite in a non-

chaotic earth orbit. As such, virtually any satellite could be used to verify and validate the 

procedures since it is not the practice of the launch community to place satellites in 

chaotic orbits. The ISS was chosen as the test case in this study for two reasons. First, it 

is crucial that the observational data be extensive and well documented to eliminate or 

isolate external variables in the study. Since human spaceflight missions have the highest 

priority for tracking and predictions, the ISS offers extensive data options as well as 

highly specialized trajectory personnel that monitor the orbit fulltime. The ISS is also an 

ideal vessel for studying stochastic predictions since it is the largest manmade object 

orbiting the earth. In its LEO orbit, air drag imparts a significant perturbing force on the 

vast surface areas spanning the ISS. The current configuration of the ISS measures 357 
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feet, end-to-end [51]. Figure 14 shows an excellent juxtaposition of the ISS with the 

famous Lambeau Field which measures 360 feet including the end zones. 

 

Figure 14. The International Space Station measures 357 ft, end-to-end, whereas an NFL 

football field measures 360 ft. Credit: T. Brian Jones 

 

Observational data was provided by the ISS Trajectory Operations and Planning 

Branch (DM33), Mission Operations Directorate, Johnson Space Center in Houston, 

Texas. The data was transmitted from the ISS’s primary onboard GPS receiver/processor. 

The parameters used include: 
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Table 1. Onboard Primary GPS Parameters. 

LADP06MDQ000H x position, TDR coordinate system (m) 

LADP06MDQ001H y position, TDR coordinate system (m) 
LADP06MDQ002H z position, TDR coordinate system (m) 

LADP06MDQ003R x velocity, TDR coordinate system (m/s) 

LADP06MDQ004R y velocity, TDR coordinate system (m/s) 
LADP06MDQ005R z velocity, TDR coordinate system (m/s) 

LADP06MDQ006W Nav time (milliseconds since the beginning of the 
week which starts on Sunday at midnight) 

LADP06MDQ452W GPS time (seconds since Jan 6, 1980 at 00:00 UTC) 
LADP06MD2946W State quality (1=good or 0=poor) 

 

The data was sampled at 1-minute intervals from 00:01:00.000 UTC on 25 March 

2010 to 12:18:01.000 UTC on 23 April 2010. This corresponds to 42,000 observations. 

To give a sense of the orbit’s coverage, the pre-filtered data appears in Figure 15. 

 

Figure 15. Pre-filtered ISS data from 25 March – 23 April 2010.  
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IV. Results 

 

Recalling back to §1.6, three primary topics were to be explored by this thesis. The 

first two were addressed in the previous chapter with a derivation of the linearized 

equations of motion near tori followed by their application to an estimation routine for 

fitting observational data to a continuum of tori. This chapter will answer the final and 

most important question of whether or not stochastic predictions can be generated from a 

reference torus and, if so, for how long. The chapter begins with results from the 

reference torus construction machinery followed by a simple verification of the Bayesian 

filtration algorithms.  The chapter concludes with the estimation and prediction results. 

4.1 Reference Torus Construction 

A relatively good fit was obtained between the reference torus and the integrated 

orbit, the results of which will be discussed shorty, but first, we begin with the difficulties 

surrounding its development. The basis frequencies proved to be the biggest challenge. 

For the ISS, the approximate basis set from Keplarian and perturbation theory, equations 

(164) - (166), were found to be: 

Table 2. J2 basis frequencies for spectral analysis. 

Coordinate Frequency (rad/TU) 

   9.24464666422975e-001 
   -5.96726955036933e-002 

   6.26401586397507e-004 
 

The Newton-Rhapson algorithm is very sensitive to the precision of the basis frequency 

frequency approximations since it can easily settle on an adjacent peak. This was the case 

for the ISS data. The most prominent peaks could not be identified by the J2 frequencies 
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alone. The author directly examined the spectral lines to improve the accuracy of the 

approximate basis set with a manual override. Figure 16 - Figure 18 show segments of 

the power spectral density plots used to identify the frequencies.   
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Appendix A contains a full accounting of the power spectral frequency combinations 

from 0 to 3 rad/TU. 

 

 

Figure 16. PSD plot identifying the apsidal frequency in the z coordinate. 
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Figure 17. PSD plot identifying the nodal frequency in the x and y coordinates. 

 

 

Figure 18. PSD plot identifying the anomalistic frequency in the x, y, and z coordinates. 
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    and    were identified by producing PSD plots near the expected peaks with up 

to seven significant digits.    was identified to a higher precision from the Newton-

Rhapson algorithm which successfully identified the    (       )  peak in previous 

software outputs. Deducting    from this frequency provided a good approximation of 

  . Thus, the basis frequencies that were used to initialize the spectral analysis are given 

in Table 3. 

Table 3. Manual basis frequencies for spectral analysis. 

Coordinate Frequency (rad/TU) 

   9.23404179345446e-001 
   -5.967015e-002 

   6.273425e-004 
 

It is important to note that the manual basis set is not the final solution; it is merely an 

approximation used to identify prominent spectral lines. The frequencies from those lines 

are used to generate a least squares estimate of the basis set. A quick review of the 

spectral lines employed, listed in Table 4, shows that the line peak powers are reasonable 

and their frequencies are extremely close to the expected frequencies from the manual 

set. The estimated basis set from the least squares solution is shown in Table 5. 

Table 4. Line peak analysis from NAFF and Newton-Rhapson results. 

Native 
Coordinate 

Spectral 
Line (    ) 

Residual Freq. (rad/TU) 
Actual - Expected 

Power Spectral Density, | |  

x 

(       ) 2.04460104402671e-009 1.82588844891577e-001 
(        ) -2.04559291727691e-009 9.99713308702777e-003 
(       ) 1.84465311980908e-006 1.38656419943255e-008 
(         ) 1.82975753992842e-006 7.67087643648475e-010 

y 

(       ) 2.04458305841371e-009 1.82585311258691e-001 
(        ) -2.04558192606896e-009 9.99362401708964e-003 
(       ) 1.84063454988781e-006 1.38656758742673e-008 
(         ) 1.86371049992751e-006 7.66612586491125e-010 

z 
(       ) 0 1.70839929172321e-001 
(       ) 1.84468687014494e-006 1.30338647593972e-008 
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Table 5. Estimated basis frequencies. 

Coordinate Frequency (rad/TU) 

   9.23406024034362e-001 
   -5.96701449186667e-002 

   6.25497810686326e-004 
 

 

As one final check, the estimated basis set was used to generate new expected 

frequencies for the ten most prominent spectral lines to ensure that the residuals are small 

after differencing the actual and expected frequencies. Table 6 depicts these values and, 

again, they are quite convincing. 

Table 6. Residuals from actual and estimated basis frequencies. 

Native 
Coordinate 

Spectral Line (    ) 
Residual Freq. (rad/TU) 
Actual - Expected 

x 

(       ) 2.0449984e-009 
(        ) 2.0449805e-009 
(       ) -2.0451945e-009 
(         ) -2.0451836e-009 

y 

(       ) 3.9779291e-013 
(        ) -3.5392383e-011 
(       ) -4.0539610e-009 
(         ) -1.4930977e-008 

z 
(       ) 1.9021981e-008 
(       ) -1.6506796e-012 

 

Given a seemingly good fit to the spectral data, the estimated frequencies were used 

to extract the Fourier coefficients. The resulting Fourier series, truncated to order 

  (      ), was used to generate native coordinates to compare to the integrated 

orbit. The limit on the index summation vector was decided after numerous trials with 

lower and higher order truncations. The Fourier series from lower order truncations could 

be generated and evaluated faster, but also introduced greater error. Craft shows the 
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relationship between improvements in accuracy and increases in the number of terms 

[52:40]. At a certain point, the improvements become computationally burdensome with 

little gain in accuracy, if at all. He also showed that lower altitude orbits require more 

terms to compensate for stronger geopotential perturbations. At an altitude of 320 km 

(which is close enough to the ISS altitude near 350 km), he suggests that there is little 

relative accuracy gain after 750 frequency combinations. A truncation of order   

(      ) corresponds to 2,958 frequency combinations, far exceeding his accuracy 

threshold where errors are sub-meter.  Since the time and effort had already been invested 

in generating this torus of higher order truncation, it made little sense to downgrade to a 

torus produced with lower order terms. Doing so would have sacrificed higher precision 

for nearly unnoticeable timing improvements in the MATLAB code that sums the Fourier 

series. 

With the chosen truncation, Figure 19 shows the RMS residuals for coordinates x, y 

and z are 121.9, 121.7, and 75.7 meters, respectively. Since the truncation is not a 

significant cause of the error and since a periodic nature appears in the residuals, it must 

be due to incorrect basis frequencies. 

Since the author is confident that the Newton-Rhapson algorithm nailed the peak at 

        ⃑⃑  (       )
 ,    and    are the only frequencies in question since    is just a 

function of   , specifically             . To improve the frequencies without 

repeating the spectral analysis, a honing function was written that adjusted the 

frequencies until the RMS residuals were minimized. This is a two-step process that first 

tweaks    while holding    constant and allowing    to vary with   . In the second 
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Figure 19. Residuals from differencing the integrated orbit and reference torus native 

coordinates (uses Fourier series truncation of order   (      ) and NAFF 

estimated frequencies). 

 

step,    and    are held constant while    is tweaked.    was initialized at the NAFF 

estimate and    was initialized at the value previously determined by detailed PSD plots 

near the expected peak. It really doesn’t matter where they are initialized, but a smart 

choice does speed up the process. The honed basis set and the residuals from the previous 

estimates are given in Table 7. 

Table 7. Honed basis frequencies and residuals from NAFF estimate. 

Coordinate Honed Basis Set (rad/TU) 
Residuals (rad/TU) 
Honed - Estimated 

   9.23407979345446 e-001 1.95531108304614e-006 

   -5.96701428186668 e-002 2.10000019457146e-009 
   6.235425 e-004 -1.95531068455002e-006 
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The newly honed basis set was used to test the deterministic torus accuracy again. 

Figure 20 shows the RMS residuals for coordinates x, y and z are 18.7, 17.6, and 19.8 

meters, respectively. Although the result is a significant improvement over the previously 

estimated frequencies, it must be noted that the coefficients still contain errors from 

picking off peaks using the NAFF estimated frequencies. A better fit between the torus 

and the integrated orbit cannot be obtained until the NAFF method is improved to 

identify a more accurate basis set. 

 

Figure 20. Residuals from differencing the integrated orbit and reference torus native 

coordinates (uses Fourier series truncation of order   (      ) and honed 

frequencies). 
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Appendix A) is that the peaks used for the least squares solution given in Table 4 are 

not the most prominent peaks. The most prominent peaks are centered about         ⃑⃑  

(       )  in the z coordinate. For example, the peak thought to be the maximum at 

        ⃑⃑  (       )
  is actually overshadowed by         ⃑⃑  (       )

 . Similarly, 

the x and y coordinates show the same behavior. The peak thought to be the maximum at 

        ⃑⃑  (       )
  is actually overshadowed by         ⃑⃑  (       )

 . This may be 

the reason the least squares solution gives the wrong frequencies. 

4.2 Filter Verification 

A verification of the NLS and Bayes filters was completed using observation data that 

was manufactured directly from the reference torus using a constant   ⃑⃑⃑⃑  ⃑  offset. This was 

necessary to show that the filters converge on the correct   ⃑⃑⃑⃑  ⃑  and can be trusted with real 

data when   ⃑⃑⃑⃑  ⃑  is unknown. The data, shown in Figure 21, was generated from the 

following offset to the reference torus:  

 

  ⃑⃑⃑⃑  ⃑  

[
 
 
 
 
 
                 

                      

                  
                      

                       

                      ]
 
 
 
 
 

 (290) 

The known offsets were recovered by the filters to within machine double precision. 

As confirmation that the filter indeed found the correct offsets to the reference torus, 

Figure 22 shows the native coordinate residuals from the manufactured observation data 

and the updated reference torus (updated with the discovered   ⃑⃑⃑⃑  ⃑ ). 
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Figure 21. Residuals from manufactured observation data generated by offsets to the 

reference torus. 

 

 

Figure 22. Coordinate residuals show reference torus was corrected to match the 

manufactured data. 
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Of further interest is the effect the simulated offsets had on the reference torus. The 

filter results show a linear drift in the initial phase angles from the   ⃑⃑⃑⃑  ⃑ updates at each 

new epoch as indicated in Figure 23 - Figure 25. This is expected from (172). 

 

Figure 23. Linear drift in Q01 due to constant dP1. 
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Figure 24. Linear drift in Q02 due to constant dP2. 

 

 

Figure 25. Linear drift in Q03 due to constant dP3. 
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4.3 Orbit Fitting 

The KAM torus was used to generate deterministic and stochastic predictions to 

compare to the ISS data. The predictions from the purely deterministic model gives a real 

sense of how quickly the ISS navigates off of the reference torus without perturbation 

updates. The stochastic predictions were formed with updates to the reference torus using 

a pseudo-stochastic parameterization of the initial phase angles and momenta offsets. 

 Deterministic Predictions 4.3.1

In its unmodified state at epoch, the reference torus can be used to generate 

deterministic predictions of the ISS native coordinates when time is the only parameter 

that is varied. This allows for a direct comparison to the actual ISS data to discern how 

well the gravitationally perturbed torus represents reality. Doing so reveals a quadratic 

growth in the residuals exceeding 500 km in just 8 days. Figure 26 shows the residuals 

from the raw data, whereas Figure 27 shows the residuals after fallacious data is rejected 

by the pre-filter. Notice that the pre-filter removed a lot of trashy data near the 11
th

 day. 

This is an important clue for later analysis of the stochastic predictions. 
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Figure 26. Residuals from direct comparison of deterministic reference torus to 

observation data. 

 

Figure 27. Pre-filtered residuals from direct comparison of deterministic reference torus 

to observation data. 
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 Stochastic Predictions 4.3.2

The time varying polynomials characterizing the initial phase angles and momenta 

offsets were used to generate stochastic predictions from the reference torus. Since their 

behavior may be sensitive to the batch size during the estimation process, batches of 100, 

300 and 1000 observations were used at roughly 1 minute intervals. Only the first half of 

the ISS data were used in the fitting process, whereas the remaining half were used as 

fresh, new observations to simulate a ―real time‖ evaluation of the predictions.  

4.3.2.1 Estimations and Predictions: Batches of 1000 Observations 

As an assurance that the data were processed correctly by the pre-filter, NLS and 

Bayes filter, results from the first two batches will be presented in addition to the full 

string of 21 batches required to process the nearly 2-weeks of ISS data at 1,000 

observations per batch. 

The first batch of data was processed by the NLS since a priori data was not 

available. Prior to the first iteration of NLS, the residuals from the raw data are plotted in 

Figure 28 for monitoring the accuracy of the pre-filter. Figure 29 shows the residuals 

after pre-filtration and Figure 30 shows the residuals after 10 iterations of NLS. The final 

RMS residuals for coordinates x, y and z are 357.17, 334.23, and 338.26 meters, 

respectively. 
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Figure 28. Residuals from first set of 1000 observations prior to pre-filter and NLS. 

 

 

Figure 29. Pre-filtered residuals from first set of 1000 observations prior to NLS. 
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Figure 30. NLS filtered residuals from first set of 1000 observations. 

 

Subsequent batches (after the NLS batch) are processed by the Bayes filter. The 

residuals from the second batch of raw data are plotted in Figure 31 for monitoring the 

accuracy of the pre-filter prior to the first iteration of the Bayes filter.  Figure 32 shows 

the residuals after pre-filtration and Figure 33 shows the residuals after 10 iterations of 

Bayes. The final RMS residuals for coordinates x, y and z are 471.53, 326.24, and 263.47 

meters, respectively. 
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Figure 31. Residuals from second set of 1000 observations prior to pre-filter and Bayes. 

 

 

Figure 32. Pre-filtered residuals from second set of 1000 observations prior to Bayes. 
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Figure 33. Bayes filtered residuals from second set of 1000 observations. 
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another. As dQ1 increases, dQ3 decreases, and vice versa. This is the classic mean 

anomaly vs. argument of perigee problem for low eccentricity orbits. 

Recall that the time derivative of Q1 is analogous to mean motion and the time 

derivative of Q3 is analogous to the apsidal regression rate, so both coordinates have the 

physical effect of displacements on the orbital plane. Since the ISS orbit has a very low 

eccentricity (~0.0007 – 0.002) the apsidal regression rate is very small (~7.7e-7 s
-1

) and is 

easily overlooked by the mean motion (~0.00114 s
-1

) in the same plane. This makes it 

susceptible to modeling errors as the two coordinates fight to converge upon a solution. 

More will be said on this later. 

 

Figure 34. Bayes filtered residuals from batches of 1000 observations. 
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Figure 35. dQ1 and dP1 torus corrections from Bayes filtered batches of 1000 

observations. 

 

Figure 36. dQ2 and dP2 torus corrections from Bayes filtered batches of 1000 

observations. 
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Figure 37. dQ3 and dP3 torus corrections from Bayes filtered batches of 1000 

observations. 
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Figure 38. Polynomial approximations of Q01 and dP1 from Bayes filtered batches of 

1000 observations. 

 

 

Figure 39. Polynomial approximations of Q02 and dP2 from Bayes filtered batches of 

1000 observations. 
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Figure 40. Polynomial approximations of Q03 and dP3 from Bayes filtered batches of 

1000 observations. 
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Figure 41. Residuals generated using pseudo-stochastic parameters estimated from 

batches of 1000 observations. 
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breakdown midway through April 12? A review of the dynamic events during the 

prediction times, listed in Table 8, show no activity on that day. However, a correlation 
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depicted with these overlapping events in Figure 42. 

Table 8. ISS Dynamic Events. 

Time (GMT) Event 

4 Apr  03:10 – 06:50 Soyuz (TMA-18) docking 
7 Apr 04:13 – 07:44 Discovery (STS-131) docking 

17 Apr 10:20 – 15:06 Discovery (STS-131) undocking 

17 Apr 19:55 – 18 Apr 02:15 Progress 35 Prop Purge 
22 Apr 13:15 – 18:04 Progress 35 undocking 
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Figure 42. Residuals from stochastic predictions correlated with dynamic events. 
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incurred when the shuttle is docked. 

It stands to reason that any significant change in drag or increase in thrust will cause a 

divergence from the predictions. The arrival of the Soyuz and Shuttle did not induce the 

same divergence because the pseudo-stochastic parameters were estimated during those 

docking events and therefore the curves were bent to compensate for the change in drag. 

But this does not excuse the Russian Progress cargo ship’s departure from the ISS on 

April 22. Figure 44 shows a 

graphic of the ISS with the 

solar arrays and Active 

Thermal Control System 

(ATCS) radiators removed 

for viewing of the Russian 

segment, particularly a 

Russian Progress resupply 

vehicle docked at the Poisk 

Mini Research Module 2 (MRM2). This zenith port was the same one used for Progress 

35 so it gives a sense of the drag contribution. Because its projected surface area is so 

much smaller than the Shuttle, its effect is more difficult to observe in the residual growth 

that is already increasing rapidly due to the Shuttle’s departure. 

The Shuttle’s departure is proof that a significant change in drag will cause 

degradation in the torus prediction, but if there were no changes to the total surface area 

of the ISS on April 12, the only other possibility for a change in drag is a change in 

Figure 44. Scaled comparison of Progress resupply vehicle 

and Space Shuttle docked to the ISS. Credit: NASA 

Russian Progress 
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particle density. Space weather reports from the National Oceanic and Atmospheric 

Administration (NOAA) were used to assess geomagnetic activity that may have 

contributed to changes in drag that day [54]. 

The NOAA uses the K-index from the Boulder Magnetometer to approximate the 

planetary Kp-index for real-time alerts and warnings. According to the NOAA Space 

Weather Scale for Geomagnetic Storms [55], minor storms (G1 class) are characterized 

by Kp values less than or equal to 5. These typically have negligible impacts on 

spacecraft operations. Moderate storms (G2 class) are characterized by Kp values equal 

to 6. Under these conditions the NOAA states, ―corrective actions to orientation may be 

required by ground control; possible changes in drag affect orbit predictions‖ [55]. Strong 

storms (G3 class), severe storms (G4 class) and extreme storms (G5 class) are 

characterized by Kp values equal to 7, 8 (including a 9-) and 9, respectively. The NOAA 

warns that the effects of these higher class storms usually include surface charging, 

orientation, tracking and prediction problems commensurate with the severity of the 

storm. G3 class storms are powerful enough that the NOAA specifically warns LEO 

satellites can experience increased drag. For the time period of ISS observations, all 

NOAA alerts for G2 through G5 class storms were logged in Table 9 [56-60]. 

Table 9. Moderate to Extreme Space Weather Events. 

Time (GMT) Event 

05 Apr 0920 ALERT: Geomagnetic K = 6 
05 Apr 0955 ALERT: Geomagnetic K = 7 

06 Apr 0422 ALERT: Geomagnetic K = 6 
12 Apr 0225 ALERT: Geomagnetic K = 6 

12 Apr 0240 ALERT: Geomagnetic K = 7 
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From 25 March through 4 April 

2010, the NOAA reported mostly 

quiet to minor storm levels in the 

geomagnetic field with only brief 

active periods where the Kp index 

peaked at 4. A halo coronal mass 

ejection (CME) observed on 3 

April caused an increase in 

geomagnetic activity starting on 5 

April that peaked with G3 class 

storms. The effects of the CME 

waned on 7 April. Any change in 

particle density incurred from this CME would have been absorbed by the pseudo-

stochastic parameters during the estimation process and won’t appear in the predictions. 

Conditions were then mostly quiet with some isolated minor storm ensuing through 11 

April. A full halo CME aimed almost directly at earth was observed on 8 April at 0325 

UTC causing major to sever storms on 12 April. It is shown in Figure 45. By 13 April the 

active storms dwindled to quiet levels at which conditions predominantly remained with 

only minor storms through 24 April. 

The presence of major geomagnetic storms on 12 April certainly leaves a possible 

explanation for the degradation in the predictions, but to be sure, further investigations 

will be required. The first step is to run the last set of 21,000 observations through the 

Figure 45. Solar flare in upper left quadrant on 

8 April 2010 produced an earth-directed CME. 

Credit: NASA Solar Dynamics Observatory 
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Bayes filter to estimate what the pseudo-stochastic parameters should have been and 

compare those to the curves generated from the first set of 21,000 observations.  

Figure 46 - Figure 48 show that the polynomials fit the estimates fairly well until 

April 12 when the predictions degenerated. A clear jump is observed in the momenta 

offsets at the times of interest, further supporting the hypothesis that drag changes shifted 

the ISS onto an adjacent torus trajectory that was not modeled. 

 

Figure 46. Estimates of dP1 from Bayes filtered batches of 1000 observations show a 

slight offset from the polynomial approximations at times of interest. 
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Figure 47. Estimates of dP2 from Bayes filtered batches of 1000 observations show a 

slight offset from the polynomial approximations at times of interest. 

 

 

Figure 48. Estimates of dP3 from Bayes filtered batches of 1000 observations show a 

slight offset from the polynomial approximations at times of interest. 
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The indisputable proof is found by calling upon the unforsaken osculating orbital 

elements. The semimajor axis is known to transfigure with variations in atmospheric 

drag. Figure 49 shows that this is precisely what happened. Because the change is so 

subtle, the event markups have been removed in Figure 50 to more clearly reveal the 

changes. 

 

Figure 49. The pre-filtered, osculating semimajor axis reveals subtle mutations near the 

events of interest. 
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Figure 50. The pre-filtered, osculating semimajor axis reveals subtle mutations near the 

events of interest. The event markups have been removed for unaided viewing. 
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The first batch of data was processed by the NLS since a priori data was not 

available. Prior to the first iteration of NLS, the residuals from the raw data are plotted in 

Figure 51 for monitoring the accuracy of the pre-filter. Figure 52 shows the residuals 

after pre-filtration and Figure 53 shows the residuals after 10 iterations of NLS. The final 

RMS residuals for coordinates x, y and z are 225.49, 202.20, and 195.93 meters, 

respectively. 

 

Figure 51. Residuals from first set of 300 observations prior to pre-filter and NLS. 
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Figure 52. Pre-filtered residuals from first set of 300 observations prior to NLS. 

 

 

Figure 53. NLS filtered residuals from first set of 300 observations. 
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Subsequent batches (after the NLS batch) are processed by the Bayes filter. The 

residuals from the second batch of raw data are plotted in Figure 54 for monitoring the 

accuracy of the pre-filter prior to the first iteration of the Bayes filter.  Figure 55 shows 

the residuals after pre-filtration and Figure 56 shows the residuals after 10 iterations of 

NLS. The final RMS residuals for coordinates x, y and z are 218.91, 118.23, and 121.68 

meters, respectively. 

 

Figure 54. Residuals from second set of 300 observations prior to pre-filter and Bayes. 
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Figure 55. Pre-filtered residuals from second set of 300 observations prior to Bayes. 

 

 

Figure 56. Bayes filtered residuals from second set of 300 observations. 
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A concatenation of the final residuals after 10 iterations from all 70 batches is shown 

in Figure 57. The RMS residuals for coordinates x, y and z are 255.14, 243.40, and 

224.80 meters, respectively. The same is done for the reference torus corrections in 

Figure 58 - Figure 60 to show the change in the initial phase angles and momenta that 

best fit the data. The plots reveal a linear trend in the momenta and a periodicity in the 

phase angles as observed and discussed previously in §4.3.2.1. 

 

Figure 57. Bayes filtered residuals from batches of 300 observations. 
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Figure 58. dQ1 and dP1 torus corrections from Bayes filtered batches of 300 

observations. 

 

 

Figure 59. dQ2 and dP2 torus corrections from Bayes filtered batches of 300 

observations. 
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Figure 60. dQ3 and dP3 torus corrections from Bayes filtered batches of 300 

observations. 
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Figure 61. Polynomial approximations of Q01 and dP1 from Bayes filtered batches of 300 

observations. 

 

 

Figure 62. Polynomial approximations of Q02 and dP2 from Bayes filtered batches of 300 

observations. 
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Figure 63. Polynomial approximations of Q03 and dP3 from Bayes filtered batches of 300 

observations. 
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Figure 64. Residuals generated using pseudo-stochastic parameters estimated from 

batches of 300 observations. 

 

For thoroughness, the last set of 21,000 observations were also run through the Bayes 

filter to estimate what the pseudo-stochastic parameters should have been and compare 

those to the curves generated from the first set of 21,000 observations. In doing so, the 

same trends appear as before with 1,000 observations per batch. Figure 65 - Figure 67 

show that the polynomials fit the estimates fairly well until April 12 when the predictions 

degenerated. A clear jump is observed in the momenta offsets at the times of interest, 

indicating that the batch size likely has nothing to do with the anomalies. This further 

supports the hypothesis that drag changes shifted the ISS onto an adjacent torus trajectory 

that was not modeled. 

0 5 10 15 20 25 30
-300

-200

-100

0

100

200

300
A B C D E

Time (days)

R
e
s
id

u
a
l 

(k
m

)

 

 

x

y

z

 

 

A - Soyuz Docking

B - Shuttle Docking

C - "Real Time" Predictions Begin

D - Shuttle Undocking

E - Progress Undocking

25-Mar 30-Mar 04-Apr 09-Apr 14-Apr 19-Apr 24-Apr



 

151 

 

Figure 65. Estimates of dP1 from Bayes filtered batches of 300 observations show a 

slight offset from the polynomial approximations at times of interest. 

 

 

Figure 66. Estimates of dP2 from Bayes filtered batches of 300 observations show a 
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0 5 10 15 20 25 30
5

6

7

8

Time (days)

P
h

a
s
e
 A

n
g

le
 (

ra
d

)

 

 

0 5 10 15 20 25 30
-4

-2

0

2
x 10

-4

M
o

m
e
n

tu
m

 (
D

U
2
/T

U
)

Q0
1
 estimated

Q0
1
 polynomial

dP
1
 estimated

dP
1
 polynomial

0 5 10 15 20 25 30
2.095

2.0955

2.096

2.0965

2.097

2.0975

2.098

2.0985

Time (days)

P
h

a
s
e
 A

n
g

le
 (

ra
d

)

 

 

0 5 10 15 20 25 30
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

-4

M
o

m
e
n

tu
m

 (
D

U
2
/T

U
)

Q0
2
 estimated

Q0
2
 polynomial

dP
2
 estimated

dP
2
 polynomial



 

152 

 

 

Figure 67. Estimates of dP3 from Bayes filtered batches of 300 observations show a 

slight offset from the polynomial approximations at times of interest. 
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after pre-filtration and Figure 70 shows the residuals after 10 iterations of NLS. The final 

RMS residuals for coordinates x, y and z are 104.95, 51.44, and 99.25 meters, 

respectively. 

 

Figure 68. Residuals from first set of 100 observations prior to pre-filter and NLS. 
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Figure 69. Pre-filtered residuals from first set of 100 observations prior to NLS. 

 

 

Figure 70. NLS filtered residuals from first set of 100 observations. 
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Subsequent batches (after the NLS batch) are processed by the Bayes filter. The 

residuals from the second batch of raw data are plotted in Figure 71 for monitoring the 

accuracy of the pre-filter prior to the first iteration of the Bayes filter.  Figure 72 shows 

the residuals after pre-filtration and Figure 73 shows the residuals after 10 iterations of 

NLS. The final RMS residuals for coordinates x, y and z are 80.63, 68.75, and 97.30 

meters, respectively. 

 

Figure 71. Residuals from second set of 100 observations prior to pre-filter and Bayes. 
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Figure 72. Pre-filtered residuals from second set of 100 observations prior to Bayes. 

 

 

Figure 73. Bayes filtered residuals from second set of 100 observations. 
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A concatenation of the final residuals after 10 iterations from all 210 batches is shown 

in Figure 74. The RMS residuals for coordinates x, y and z are 180.42, 181.70, and 

169.74 meters, respectively. The same is done for the reference torus corrections in 

Figure 75 - Figure 77 to show the change in the initial phase angles and momenta that 

best fit the data. The plots reveal a linear trend in the momenta and a periodicity in the 

phase angles as observed and discussed previously in §4.3.2.1. 

 

Figure 74. Bayes filtered residuals from batches of 100 observations. 
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Figure 75. dQ1 and dP1 torus corrections from Bayes filtered batches of 100 

observations. 

 

 

Figure 76. dQ2 and dP2 torus corrections from Bayes filtered batches of 100 

observations. 
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Figure 77. dQ3 and dP3 torus corrections from Bayes filtered batches of 100 

observations. 
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Figure 78. Polynomial approximations of Q01 and dP1 from Bayes filtered batches of 100 

observations. 

 

 

Figure 79. Polynomial approximations of Q02 and dP2 from Bayes filtered batches of 100 

observations. 
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Figure 80. Polynomial approximations of Q03 and dP3 from Bayes filtered batches of 100 

observations. 

 

As before, the pseudo-stochastic parameters were used to generate stochastic 

predictions from the reference torus. All 42,000 observations, including the first 21,000 

that were used during the estimation process, were compared to the torus prediction. The 

last 21,000 observations are used to simulate the torus’ ability to predict in real time since 

the data were not processed previously by the Bayes filter. Figure 81 shows the residuals 

for the full 42,000 observations with the exact same deterioration characteristics as seen 

previously. Prior to the degradation in the prediction at 18.5 days, the RMS residuals for 

coordinates x, y and z are 2.789, 2.800, and 2.643 kilometers, respectively. These are 

slightly worse than those found with batches of 300 and 1,000 observations. 
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Figure 81. Residuals generated using pseudo-stochastic parameters estimated from 

batches of 100 observations. 

 

For thoroughness, the last set of 21,000 observations were also run through the Bayes 

filter to estimate what the pseudo-stochastic parameters should have been and compare 

those to the curves generated from the first set of 21,000 observations. In doing so, the 

same trends appear as before with 300 and 1,000 observations per batch. Figure 82 - 

Figure 84 show that the polynomials fit the estimates fairly well until April 12 when the 

predictions degenerated. A clear jump is observed in the momenta offsets at the times of 

interest, further supporting the hypothesis that drag changes shifted the ISS onto an 

adjacent torus trajectory that was not modeled. 
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Figure 82. Estimates of dP1 from Bayes filtered batches of 100 observations show a 

slight offset from the polynomial approximations at times of interest. 

 

 

Figure 83. Estimates of dP2 from Bayes filtered batches of 100 observations show a 

slight offset from the polynomial approximations at times of interest. 
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Figure 84. Estimates of dP3 from Bayes filtered batches of 100 observations show a 

slight offset from the polynomial approximations at times of interest. 
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V. Conclusions and Recommendations 

 

The underlying motivation for this research was to improve space situational 

awareness by extending KAM theorem’s efficacy to stochastic orbit prediction. The 

results are conclusive. Most stochastic effects in LEO can be modeled to fit and predict a 

satellite’s motion near a reference torus. The geometric construal of the satellite path 

suggests a flexing annulus of concentric, continuous tori about which the satellite may 

circumnavigate systematically. 

5.1 Torus Construction 

The Fourier decomposition of the integrated trajectory using Laskar’s NAFF worked 

reasonably well to map (   )  (   ); however, significant issues must be overcome to 

perfectly identify the fundamental frequencies. Even a faintly flawed basis set is enough 

to distort the Laskar process when picking off spectral amplitudes. This is believed to 

have been the cause of the inherent errors in the ISS reference that grew periodically to 

roughly 80 meters within the first six months.  

As mentioned in §4.1, the most likely reason for the wrong frequencies is that the ten 

most prominent spectral lines used for the least squares solution were associated with the 

wrong j-index label. The most prominent peaks are not centered about         ⃑⃑  

(       )  in the z coordinate, but instead are centered about         ⃑⃑  (       )
 . 

Nevertheless, these inconsistencies in the torus-construction machinery still provided a 

reference torus that was good enough to proceed with the stochastic estimation process – 

a testament of KAM theory’s tractability even without an exact basis set. 
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If KAM theory is to find a place in the mainstream of orbital sciences, the procedures 

for generating tori must be improved so that they may be autonomously generated from 

space surveillance data with limited human involvement. The current state of the art 

requires extensive human massaging and tweaking that would make it impractical as an 

application for hundreds of thousands of earth orbiting objects. Nevertheless, it is the 

belief of this author along with all those who toil in this field, that it is possible, perhaps 

within this decade. 

5.2 Stochastic Predictions 

In this present work as in that by Little, low earth orbits have exhibited perturbations 

that cannot be modeled by a purely deterministic, static torus. If a non-chaotic earth orbit 

is occupied, the phase space will be filled with a dense continuum of flexing, persisting 

tori. The presence of large perturbations tends to distort local tori, forcing the satellite to 

migrate from one torus to another. Even still, the results from §4.3 showed that it is 

possible to forecast motion in the vicinity of a reference torus when the right conditions 

are met. 

Modeling the non-periodic motion about the reference torus is largely contingent 

upon the pseudo-stochastic parameters. The low eccentricity of the ISS made it difficult 

to estimate the torus coordinate offsets since the Keplarian and apsidal coordinates 

opposed one another in a sinusoidal manner. Curve-fits of the parameters were still 

possible, but they suffered from immediate limitations in accuracy. The batch size had a 

slight impact on the accuracy; larger batches provide better results, but it is not clear to 
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what extent size matters. A more thorough review would be required with varied 

observation intervals.  

Another cause for errors in the non-periodic motion is a rapid shift in the drag 

environment or surface area. These changes require larger offsets in the pseudo-stochastic 

parameters than are modeled during the estimation process. 

In the end, the difficulties encountered are minor compared to the incredible feat of 

modeling the largest earth orbiting satellite in excess of 18 days with RMS residuals 

bounded near 2 km – quite the contrast from the results that showed the static torus’ 

residuals grow unbounded to 3,000 km in the same time. The real value of these results 

cannot be known without a direct comparison to a ―full-up‖ numerical propagator that 

includes the same high-order gravity field, a sophisticated atmosphere model with real 

solar characteristics, the complete solar and lunar ephemerides, and solar radiation 

pressure. This recommendation, left for the next section, would indicate if and how KAM 

theory improves the current state of the art. With the present low-eccentricity problem, it 

is expected that the full-up integrator will be more accurate in the short term (perhaps 10s 

or 100s of meters in total RMS from the true orbit), but the stochastic predictions from 

the KAM torus may rival the propagator in the long term as the full-up propagator 

diverges from reality. 

Additional research will be required to confirm these findings and improvements in 

accuracy will be required before KAM theory can be relied upon for high priority assets 

such as the ISS. This does not preclude its immediate testing on debris orbits and low 
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priority assets which could extend the length of time between reacquisition by tracking 

systems. 

5.3 Recommendations for Future Research 

The first goal of future efforts should be an improvement to the automation process 

for finding fundamental frequencies from the trajectory-following method. Once it proves 

successful on a handful of numerically integrated orbits, a full 3-dimensional matrix of 

orbits with different eccentricities, altitudes, and inclinations ought to be assembled from 

real satellite ephemerides and batch processed to test the reliability of the Fourier 

analysis.  

Another major hurdle that must be overcome is the low eccentricity problem 

encountered here and by Craft. As it relates to stochastic predictions, it may be possible 

to improve the polynomial functions and reduce sinusoidal behavior in the Keplarian and 

apsidal coordinates by iterating on the polynomial production process. After the first 

polynomial is generated, the Bayes filtration process could be repeated with initial torus 

offsets generated by the previous polynomial approximations. This procedure may be 

iterated upon until the polynomials are smooth. 

The Bayes filter provided reasonable results using linearized two-body dynamics, but 

it may be worthwhile to explore an expansion of the equations of motion to include the 

moon, sun, and air drag. The current fitting process attempts to account for all of these 

nonconservative perturbations by lumping them into one set of all-inclusive pseudo-

stochastic parameters. Better results may be obtained by isolating the parallel and 

perpendicular contributions from each source and proceeding to make stochastic 
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predictions from multiple sets of pseudo-stochastic parameters. This does not mean that 

the current dynamics model should be immediately discarded, though. It is quite possible 

that some orbits (such as those at higher LEO where air density is reduced) will fare very 

well with the simplified equations employed here. 

As it relates to the first recommendation, observational data ought to be obtained 

from a vast assortment of satellite orbits and processed through a Bayesian filter—similar 

to the one established here or one improved by the previous recommendations. 

Predictions could then be generated for each of the satellites to determine the method’s 

level of trustworthiness. Only then will it be certain that KAM theory can be applied 

effortlessly to the multitude of objects that must be tracked in earth orbits. The results 

from this study are simply not enough to guarantee the applicability of KAM theory for 

operational use. This study may also shed additional light on the impacts of solar events. 

Even though the present study showed deteriorations in predictions following a major 

solar storm, it may be possible to compensate for deleterious density changes by 

adjusting the pseudo-stochastic parameters in a predictable manner. 

Finally, the results of this study indicate that the KAM torus can detect subtle changes 

in the thermosphere density. Since these changes are not easily observed in the osculating 

orbital elements or the native coordinates, KAM theory may offer an innovative approach 

for studying trends in the upper atmosphere from historical spacecraft ephemerides across 

a broader range of altitudes without the presence of specialized measurement devices.  
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Figure 85. A silhouette of the Space Shuttle Endeavor (STS-130) departing the ISS in 

which the backdrop depicts the lower layers of the earth’s atmosphere. Credit: NASA 
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Appendix A 

A.1 Identification of Power Spectral Frequency Combinations from 0 to 3 rad/TU 

 

 

 

 

Figure 86. PSD plot identifying frequency combinations from [0, 0.2] rad/TU. 
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Figure 87. PSD plot identifying frequency combinations from [0.2, 0.4] rad/TU. 
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Figure 88. PSD plot identifying frequency combinations from [0.4, 0.6] rad/TU. 
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Figure 89. PSD plot identifying frequency combinations from [0.6, 0.8] rad/TU. 
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Figure 90. PSD plot identifying frequency combinations from [0.8, 1.0] rad/TU. 
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Figure 91. PSD plot identifying frequency combinations from [1.0, 1.2] rad/TU. 
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Figure 92. PSD plot identifying frequency combinations from [1.2, 1.4] rad/TU. 
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Figure 93. PSD plot identifying frequency combinations from [1.4, 1.6] rad/TU. 
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Figure 94. PSD plot identifying frequency combinations from [1.6, 1.8] rad/TU. 
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Figure 95. PSD plot identifying frequency combinations from [1.8, 2.0] rad/TU. 
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Figure 96. PSD plot identifying frequency combinations from [2.0, 2.2] rad/TU. 
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Figure 97. PSD plot identifying frequency combinations from [2.2, 2.4] rad/TU. 
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Figure 98. PSD plot identifying frequency combinations from [2.4, 2.6] rad/TU. 
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Figure 99. PSD plot identifying frequency combinations from [2.6, 2.8] rad/TU. 
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Figure 100. PSD plot identifying frequency combinations from [2.8, 3.0] rad/TU. 
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